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ABSTRACT

As cosmological models grow increasingly complex, the computational
demands for their analysis have significantly increased, making param-
eter inference especially challenging. This thesis presents a frame-
work, connect, designed to alleviate these computational bottlenecks
through the emulation of cosmological observables. Initially developed
with the analysis of decaying dark matter models as motivation, con-
nect has evolved into a versatile tool capable of emulating observables
across a wide range of cosmological models. By reducing the computa-
tional cost of these models, connect facilitates more e�cient param-
eter inference, enabling faster exploration of cosmological parameter
spaces.

The thesis o�ers a comprehensive overview of the statistical methods
used for parameter inference, including Bayesian and frequentist ap-
proaches, and provides the theoretical foundations of cosmological mod-
els, focusing on the standard LCDM model and its extensions involving
decaying dark matter. The development of the connect framework is
discussed in detail, and so are its various applications. Results demon-
strate the e�ectiveness of emulation in accelerating the estimation of
model parameters, particularly for complex cosmological models.

While the work behind this thesis provides a contribution towards
addressing the computational challenges in cosmology, it also highlights
that there is still much to explore. The emulation framework presented
here o�ers a promising tool, and future improvements and applications
may help further streamline and optimise cosmological analyses.



DANISH ABSTRACT

Efterhånden som kosmologiske modeller bliver mere komplekse, er de
beregningsmæssige krav til analyse af dem steget markant, hvilket gør
parameterestimering særligt udfordrende. Denne afhandling præsente-
rer et framework, connect, der er udviklet for at afhjælpe disse bereg-
ningsmæssige flaskehalse gennem emulering af kosmologiske observabler.
Selvom connect oprindeligt blev motiveret af modeller med henfalden-
de mørkt stof, er connect blevet et alsidigt værktøj, der kan emulere
observabler for en bred vifte af kosmologiske modeller. Ved at reducere
de beregningsmæssige omkostninger ved disse modeller, gør connect
parameterestimeringen lettere og gør det derved muligt at udforske kos-
mologiske parameterrum hurtigere.

Afhandlingen giver et grundigt overblik over de statistiske metoder,
der anvendes til parameterestimering, herunder både Bayesianske og
frekventistiske tilgange, og præsenterer de teoretiske fundamenter bag
kosmologiske modeller med særlig vægt på LCDM-modellen og dens ud-
videlser med henfaldende mørkt stof. Udviklingen af connect koden
diskuteres detaljeret, og det samme gør sig gældende for dens mange
anvendelser. Resultaterne viser, hvordan emulering kan accelerere esti-
meringen af modelparametre, især for komplekse kosmologiske modeller.

Selvom arbejdet bag denne afhandling bidrager til at løse nogle af de
beregningsmæssige udfordringer i kosmologi, viser det også, at der sta-
dig er meget endnu at udforske. connect rummer et lovende potentiale,
og fremtidige forbedringer og anvendelsesmuligheder vil sandsynligvis
bidrage til at strømline og optimere kosmologiske analyser.
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INTRODUCTION

The study of cosmology seeks to understand the fundamental proper-
ties and evolution of the universe. Central to this pursuit are cosmo-
logical models that describe the behaviour of dark matter, dark energy,
and other cosmic phenomena. As these models become increasingly
sophisticated, the computational demands for their analysis rise signifi-
cantly. This challenge is particularly evident in the context of decaying
dark matter models, where traditional computational techniques, such
as Markov chain Monte Carlo (MCMC) sampling, struggle with the
increasing complexity of the models. The ine�ciency of repeated com-
putations has made the inference of cosmological parameters from these
models a challenging task.

My research journey began with a focus on decaying dark matter
models. These models, which hypothesise that dark matter can decay
into other particles in the dark sector over time, o�er intriguing insights
into some of the unresolved questions in cosmology, including the Hub-
ble tension. However, the computational intensity of these models soon
became a major challenge, limiting the ability to perform robust pa-
rameter inference. To address this, I began working on a side project
to develop an emulation framework that would expedite the calcula-
tion of cosmological observables, enabling more e�cient use of MCMC
sampling for parameter inference. This “side” project would, however,
turn out to completely take over the focus of my PhD. The result of
this endeavour is connect, a neural network based framework designed
to emulate cosmological observables. By approximating the outputs of
cosmological computations of observables, connect reduces the compu-
tational burden associated with these models, allowing for a quicker and
more e�cient analysis. What began as a tool tailored for decaying dark
matter models evolved into a more comprehensive framework capable
of handling a variety of cosmological models. This versatility has ex-
panded the potential applications of connect beyond its initial scope,
making it a valuable asset for the broader cosmological community.

This thesis is structured to reflect the development and application
of connect in the context of cosmological research. It is split into two
parts; the first one describes all the necessary theory for understanding
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the emulation framework along with its cosmological motivation and
applications, while the second part describes the results obtained using
the framework and all the considerations that have gone into it.

The first part begins with a discussion of statistical methods for pa-
rameter inference, including both Bayesian and frequentist approaches.
Chapter 1 provides a detailed overview of these methods, focusing on
MCMC techniques and, in particular, the Metropolis-Hastings algo-
rithm, as well as maximum-likelihood estimation and profile likelihoods.
These methods are foundational to the subsequent discussions of cosmo-
logical modelling and inference. Chapter 2 introduces the standard cos-
mological model, LCDM, which serves as a baseline for exploring more
complex models such as those involving decaying dark matter. This
chapter covers key observations, such as the cosmic microwave back-
ground (CMB), and the Hubble tension, and delves into the theoretical
framework describing both homogeneous and isotropic cosmology as
well as inhomogeneities and structure formation. The focus shifts to
the class of extensions to the LCDM model involving decaying dark
matter in chapter 3, where various models are explored, with particular
emphasis on the simplest decaying cold dark matter model (DCDM).
The impact of DCDM on the Hubble and S8 tensions is also examined,
along with current constraints on decay parameters. The ending of
this chapter lays the groundwork for understanding the computational
challenges associated with more complex decaying dark matter models,
which motivated the development of connect. Chapter 4 is the last
chapter of the theoretical part of the thesis, and it introduces the field
of machine learning, with a focus on supervised learning and active
learning scenarios. Neural networks, particularly multilayer neural net-
works, are discussed in detail, including their architecture, activation
functions, and the backpropagation algorithm. This chapter further-
more addresses common training challenges and sets the stage for the
development of the connect framework.

The second part of the thesis (chapters 5 through 8) details the de-
velopment, implementation, and application of connect. Chapter 5
describes the neural network design, including the choice of loss func-
tions, activation functions, and the normalisation of inputs and outputs.
The integration of connect with the popular MCMC sampler codes,
MontePython and Cobaya, for cosmological parameter inference, is
also covered, demonstrating its practical applications in cosmological
research. Chapter 6 focuses on the use of connect for profile like-
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lihoods, discussing the optimisation of the likelihood function and the
implementation of numerical methods to accomplish this. The results of
applying connect to LCDM, massive neutrinos, and DCDM models
are presented, along with an evaluation of its computational perfor-
mance. Chapter 7 explores the use of connect for Bayesian evidence
computation, validating its accuracy and discussing its application to
inflationary model parameterisation. Finally, chapter 8 examines the
improvement of training data using hypersphere sampling methods, and
these methods are compared with Latin hypercube sampling in the con-
text of connect’s performance.

This thesis aims to address some of the computational challenges
in cosmology by presenting a tool designed to emulate cosmological
observables e�ciently. By reducing the computational strain of complex
models, connect aims to enable faster and more accessible exploration
of cosmological parameters. It is intended to serve as a useful resource
for researchers, o�ering a means to streamline analyses and support
ongoing investigations into the fundamental nature of the universe.





Part I

THEORY

There is a theory which states that if ever anyone discov-
ers exactly what the Universe is for and why it is here,
it will instantly disappear and be replaced by something
even more bizarre and inexplicable. There is another theory
which states that this has already happened.

Douglas Adams





1
STATIST ICAL METHODS FOR
PARAMETER INFERENCE

In order to perform detailed analyses of cosmological observations so
we can unlock the secrets of our very universe, a robust mathematical
foundation on which our methods can rely is essential. A crucial part
of this foundation is the field of statistics. While statistical methods
are often perceived as abstract or complex, they are indispensable for
interpreting and analysing cosmological data. Without the application
of rigorous statistical methods, cosmologists would not have the tools
to derive meaningful insights from observational data.

It is therefore important to describe the statistical frameworks and
their methodologies that are relevant to the analyses in this thesis.
Throughout my PhD, I have had the opportunity to explore a range
of statistical methods and this experience has taught me an important
lesson: the importance of remaining open to alternative approaches, as
embracing flexibility and adaptability often leads to deeper insights.

In this chapter, we will have a look at both Bayesian statistics and
frequentist statistics – two di�erent paradigms in which something as
fundamental as the concept of probability is treated di�erently. We will
go over di�erent methods used for cosmological parameter inference of
both paradigms and explain how they di�er and complement each other.

1 . 1 BAYES IAN PARAMETER INFERENCE

Bayesian statistics, named after the English statistician Thomas Bayes,
is currently the dominant statistical framework within the field of cosmo-
logical parameter inference. It revolves around a certain interpretation
of probability where probability is regarded as a degree of belief in an
event. This degree of belief may di�er from person to person depending
on the knowledge available to the respective individual, and it is thus
also referred to as a subjective probability. It is furthermore known as
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Bayesian probability due to its reliance on Bayes’ theorem which is a
fundamental, yet simple, theorem of probability theory regardless of the
definition of probability in use [9].

The theorem describes the conditional probability P (A|B) of event
A given that B is true. The theorem can be derived easily by noting
that the probability P (A fiB) of both events A and B occurring can
be expressed as the product of the conditional probability of A given
B and the probability of B occurring, i.e., P (A fiB) = P (A|B)P (B).
There is, however, nothing special about either event over the other, so
we can of course switch A and B in this expression. Doing that and
equating the two expressions for the combined probability of both events
occurring, we can derive an expression for the conditional probability
of A given B,

P (A|B) =
P (B|A)P (A)

P (B)
. (1.1)

This is exactly Bayes’ theorem and it has many uses within probabil-
ity theory. In Bayesian statistics, the theorem is typically interpreted
such that B represents experimental data while A represents a theo-
retical model. The theorem then suggests that the probability of the
theoretical model being correct given the measured data (P (A|B)) is
proportional to the probability of measuring that exact data if the the-
oretical model is correct (P (B|A)) multiplied by the probability of the
theoretical model being correct (P (A)). P (A) is in this case referred to
as the prior probability that you would assign to the theoretical model
before considering the data B, while P (A|B) is referred to as the poste-
rior probability of the theoretical model in light of the new data. Bayes’
theorem in this case expresses a way to update one’s subjective belief
in a theoretical model when new data is available. The factor of P (B)
in the denominator describes the probability of measuring the data at
all and is also referred to as the evidence.

It is useful to define the quantity L(x, q), known as the likelihood
function, describing the probability of obtaining the data x given the
model parameter vector q. This sounds a lot like the factor P (B|A) in
Bayes’ theorem shown above, although that described probabilities of
single events. We can, however, generalise Bayes’ theorem to continuous
variables and probability density functions [9],

p(q|x) =
L(x, q)fi(q)R
L(x, q)fi(q)dq

, (1.2)
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where p(q|x) denotes the posterior probability density function over the
model parameters q given the data x, fi(q) is the prior probability dis-
tribution of the model parameters, L(x, q) is the likelihood function as
described before, and the denominator is once again the evidence given
by an integral of the product of the likelihood function and the prior
distribution over the entire model parameter space. This integral in
the denominator serves as a normalisation factor of the posterior prob-
ability distribution. The factor is usually disregarded when performing
Bayesian parameter inference due to the integral over the entire param-
eter space being a computationally expensive endeavour. Within the
field of cosmology, the evidence is used to compare cosmological models
in order to determine which one generally fits the data better across
all the di�erent realisations of the models (points in their respective
parameter spaces). It is important to stress that the likelihood function
is not itself a probability density, since q is regarded as a fixed (but
unknown) variable instead of a random variable.

The posterior is key to Bayesian parameter inference, but it can be
di�cult to visualise and investigate when the dimensionality of the pa-
rameter space is high. In this case, it is useful to look at only a single
model parameter ◊i at a time. An expression of the one-dimensional
probability function describing this parameter can be found through
marginalisation, i.e., integrating out all other model parameters qj ”=i,
and it is thus referred to as the marginalised posterior,

p(◊i|x) =
Z
p(q|x)dqj ”=i =

R
L(x, q)fi(q)dqj ”=iR
L(x, q)fi(q)dq

. (1.3)

Similarly, a two-dimensional marginalised posterior can be obtained by
integrating out all model parameters except the two of interest.

Even though all information about the inference is contained in the
posterior, it is in practice more useful to summarise the posterior with
a measure of location and a measure of spread. One has a few choices
for the location, i.e., the best estimate of the parameters; the maximum
of the posterior called the mode of the posterior, the median of the
posterior, or the mean of the posterior. The mode has the advantage
that it coincides with the maximum likelihood estimate (MLE) if the
prior distribution is uniform, but it can be misleading in skewed or
multimodal distributions or be located near the ends of the distribution.
The median has the advantage of usually being the most robust estimate
by being invariant under a�ne transformations (such as taking the
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logarithm), and it is also less a�ected by the tails of the distribution.
The mean is widely used as the best estimate in Bayesian analysis,
due to it using information from the entire distribution and being less
a�ected by the tails of the distribution compared to the mode, but a very
heavy tail can potentially place it far from most of the probability [10].
It is important to stress that none of these ways of summarising the
posterior are necessarily better than the other; they simply express
di�erent information.

The uncertainty in Bayesian inference is the credible interval in the
one-dimensional case or the credible region for a multi-dimensional pa-
rameter space. For a single parameter of interest, ◊, the credible interval
at a level of significance of 1≠– is defined as the interval [◊low, ◊up] sat-
isfying

P (◊low < ◊ < ◊up) =
Z

◊up

◊low

p(◊|x)d◊ = 1≠ – . (1.4)

That is, the probability of the true value of the parameter being within
the interval is 1≠ –. This is, however, ambiguous since multiple inter-
vals will satisfy this equation, and it is therefore necessary to impose
an additional condition [9]. The most commonly chosen condition is
to use the shortest interval, meaning that the di�erence between the
lower and upper limits should be minimised. In the case of a single
maximum in the distribution, the shortest interval will always contain
the mode of the posterior, so this interval is typically used when using
the mode as the best estimate of the parameter. When using the mean
or the median as the best estimate, the additional condition is often
chosen to be that of the central interval, also known as the equal-tailed
interval. This ensures that there is the same probability of being above
and below the interval, i.e.,

P (≠Œ < ◊ < ◊low) = P (◊up < ◊ <Œ) =
–

2 . (1.5)

For multi-dimensional cases, the credible regions are typically defined
as the contour regions with the smallest hypervolume. Furthermore, if
a parameter is bounded, e.g., by physical constraints such as requiring
a mass to be non-negative, the best estimate can be exactly on this
boundary. In this case, only an upper or lower limit on the parameter
is quoted.
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1 . 1 . 1 MARKOV CHAIN MONTE CARLO

The posterior probability density function is not easily obtainable in
practice, since the likelihood function usually is not an analytic func-
tion. A single evaluation of the likelihood function can also be compu-
tationally expensive, thus making grid-based sampling impossible in a
high-dimensional parameter space. In order to be able to sample the
posterior well, methods like Markov chain Monte Carlo (MCMC) are
invaluable. This refers to a class of numerical methods allowing the
user to draw samples from the proportional posterior (product of likeli-
hood function and prior distribution) only in regions of the parameter
space with significant contributions to the posterior [10]. In statistics,
a Markov chain is a process that moves around di�erent states stochas-
tically, with the next state only depending on the current state (mem-
oryless property), while Monte Carlo refers to a class of methods using
random sampling to obtain numerical results. MCMC thus combine the
random walk process by Markov chains with the randomised sampling
aspect of Monte Carlo methods. The basic algorithm is as follows:

1. Select a starting point for the process (usually a best guess of a
location measure of the posterior).

2. Select a new point randomly from a proposal distribution (de-
pends on the specific kind of MCMC).

3. Assess whether or not to switch to the new point and append it
to the Markov chain.

4. Repeat steps 2-3 until the distribution described by the chain
converges.

There are various di�erent options for the proposal distribution and
how to accept/reject points, and each of these describes a specific
MCMC algorithm. One such algorithm that is widely used for parame-
ter inference due to its simplicity is the Metropolis-Hastings algorithm.
This only needs the function value of the likelihood function, unlike
more sophisticated MCMC methods like Hamiltonian Monte Carlo re-
lying also on the gradient of the likelihood function. The Metropolis-
Hastings algorithm is, however, the only one relevant to this thesis, so
this will be addressed in detail.



8 statistical methods for parameter inference

1 . 1 . 2 METROPOL IS -HAST INGS ALGORITHM

The Metropolis-Hastings algorithm is particularly useful for sampling
the Bayesian posterior distribution, since it is su�cient to only be able
to compute a quantity proportional to the posterior. This means that
we can ignore the integral in the denominator of equation (1.2) (the
Bayesian evidence) since this is di�cult to compute in practice.

For the algorithm to be useful in practice, the Markov process must
converge to a unique stationary distribution. The Markov process being
ergodic ensures the existence of such a unique stationary distribution,
and it being reversible ensures that the distribution is the target distri-
bution (the true posterior). The ergodicity means that the Markov pro-
cess can reach every state from every other state and that the expected
number of steps for returning to a state is finite, while the reversibility
means that the transition between two states must be symmetric, i.e.,
being in state ◊ and transitioning to state ◊

Õ must have the same prob-
ability as being in state ◊

Õ and transitioning to state ◊ [11]. Using this,
we may derive the acceptance criterion used in the Metropolis-Hastings
algorithm [12].

The probability of transitioning from state ◊ to state ◊
Õ must be the

product of the probability of selecting the state ◊
Õ as a new candidate

given the current state ◊ and the probability of accepting the new state
given the current state. The conditional probability of selecting a new
candidate state ◊

Õ from the current state ◊ is described by the proposal
function, P(◊Õ|◊), and we similarly denote the acceptance probability as
a conditional probability, A(◊Õ|◊). The transition probability, · , from ◊

to ◊
Õ is thus

· (◊Õ|◊) = P(◊Õ|◊)A(◊Õ|◊) . (1.6)

The reversibility of the Markov process results in the product of the
transition probability · (◊Õ|◊) and the probability of being in the state
◊ is equal to the product of the reverse transition probability and the
probability of being in the state ◊Õ. The probability of being in a certain
state is exactly the target distribution evaluated at that state, i.e., the
posterior, p(◊) (we keep the conditional dependence on the data implicit
for now). We may then write

p(◊)· (◊Õ|◊) = p(◊Õ)· (◊|◊Õ) , (1.7)
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into which we can substitute the expression for the transition probability
and arrive at an expression for the ratio of acceptance probabilities,

A(◊Õ|◊)
A(◊|◊Õ) =

p(◊Õ)P(◊|◊Õ)
p(◊)P(◊Õ|◊) . (1.8)

There now is some freedom in choosing the acceptance probability,
A(◊Õ|◊), such that it satisfies the above equation, but the choice used
in the Metropolis-Hastings algorithm is using a function equal to the
right-hand side of equation (1.8) when its function value is less than 1
and a constant function of 1 when the function value is greater than 1.
This can be written as

A(◊Õ|◊) = min
✓

1, p(◊
Õ)P(◊|◊Õ)

p(◊)P(◊Õ|◊)

◆
. (1.9)

In the case of a symmetric proposal function, these will cancel in the ex-
pression and the acceptance will alone depend on the ratio between the
posterior values in the two states. This is known as just the Metropolis
algorithm as this was the one used in the original paper from 1953 [13].
The original paper also described a uniform distribution with a given
range centred at the current state as the proposal distribution, while
a more common choice today is a Gaussian distribution centred at
the current state described by an estimated covariance matrix (also
a symmetric choice). Using a Gaussian proposal distribution, the com-
plete Metropolis-Hastings algorithm is then described by the following
pseudo-code:
chain = [ ]
qcurrent = [◊initial

1 , ◊initial
2 , ..., ◊initial

N
]

Lcurrent = posterior(qcurrent)
Cov = ÈEstimated N ◊N covariance matrixÍ
for 0 Æ i < Nsteps do

Pproposal(q) = MultivariateGaussian(qcurrent,Cov)
qnew = ÈDraw point from PproposalÍ
Lnew = posterior(qnew)
u = RandomUniform([0,1])
a = min(1,Lnew/Lcurrent)
if u Æ a then

qcurrent = qnew
Lcurrent = Lnew

Èappend qcurrent to chainÍ
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�1

�
2

Figure 1.1: Example distribution used to test the Metropolis-Hastings al-
gorithm. This two-dimensional distribution consists of three superimposed
Gaussian distributions with a global maximum in the centre of the parameter
space. The two contours mark the 68.27% and 95.45% credible regions.

Let us have a look at this algorithm in action. Consider the (some-
what contrived) two-parameter example distribution in figure 1.1 con-
sisting of three superimposed Gaussian distributions. It has the two
parameters ◊1 and ◊2, and I will (for obvious reasons) refer to the dis-
tribution as the H-distribution denoted by the function LH(◊1, ◊2). We
now imagine a case where the H-distribution is the true posterior that
we want to sample. Before using the algorithm, it is worth considering
how many steps we might need to take before the distribution is sampled
well, but this is not easy to know from the beginning. Luckily, because
the transition to the next point only depends on the current point, we
may choose any number, and if it is insu�cient, we can just continue.
The process of checking for convergence manually several times can,
however, be tedious, so in practice, this is often automated. For this
example, we will repeat the sampling for four di�erent numbers of steps,
1,000, 5,000, 10,000, and 100,000, and set the centre of the parameter
space (the global maximum) as the starting point.

The points sampled in these four MCMC runs are shown in figure 1.2
along with the 68.27% and 95.45% credible regions computed from the
points and the true posterior contours as well. It is clearly visible that
1,000 points are too few to accurately represent the H-distribution. The
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N = 1,000
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Figure 1.2: The top row of panels shows the points sampled by the Metropolis-
Hastings algorithm for di�erent numbers of steps in the MCMC runs, coloured
to reflect the value of the true posterior denoted LH(◊1, ◊2). The acceptance
rates – for the individual runs are also shown in the panels. The bottom row
shows the resulting 68.27% and 95.45% credible regions (blue filled contours)
obtained using the sampled points along with the contours of the true posterior
(dashed grey line).

algorithm had started to sample the sides of the H-shape but it had not
had the time necessary to explore the entire distribution. Only 364
points were actually accepted (and thus included in the figure) due
to the acceptance rate being 0.364 (also shown in the figure), so one
needs to also take this into account when choosing the number of steps.
The optimal acceptance rate is between 0.2 and 0.4 depending on the
dimensionality of the problem [14]. The acceptance rate is similar for
the other amounts of sampling points, and already at 5,000 we see
that the entire shape has been visited. It is not, however, until we
use on the order of 100,000 points that we get smooth and converged
posterior contours. Depending on the shape of the posterior and the
dimensionality, it can potentially require a much larger number of steps
before convergence is reached.

It is usually necessary to marginalise the posterior in order to present
it, although we, in fact, can present the entire posterior in this case
since the parameter space is only two-dimensional. We compute the
one-dimensional marginalised posteriors for the two parameters by in-
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Figure 1.3: One-dimensional histograms (orange bars) for each of the two
parameters and for di�erent numbers of steps in the MCMC runs. The true
marginalised posteriors are also shown (blue lines).

tegrating the other parameter out, e.g., the marginalised posterior for
◊1 is given by

p(◊1) =
Z
LH(◊1, ◊2)d◊2 . (1.10)

The true marginalised posteriors for ◊1 and ◊2 are shown in figure 1.3
along with the one-dimensional histograms of the sampled data. Here,
we can see how the histograms converge towards the marginalised poste-
riors. It is interesting to note that the two marginalised posteriors have
maxima located di�erently. The ◊1 posterior has two equal maxima
near the edges and a smaller bump in the middle, while the ◊2 posterior
has a narrow central peak with broad tails. This is despite the true two-
dimensional posterior having its global maximum in the centre of the
parameter space. The reason for the ◊1 posterior not having its central
bump as the highest peak is due to it only contributing significantly in
a narrow interval when integrating over ◊2. The marginalised posterior
is thus sensitive to the distribution of probability volume and will not
necessarily peak at the maximum of the true multi-dimensional poste-
rior. This is known as a volume e�ect and it is necessary to be aware of
how this potentially can hide certain features of the multi-dimensional
posterior.
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2

�2

Sampled posterior

True posterior

Figure 1.4: Triangle plot showing the one-dimensional marginalised posterior
distributions and the contour lines of the two-dimensional posterior obtained
through 100,000 MCMC steps (blue contours/lines) along with the contours of
the true posterior and true marginalised posteriors (dashed orange contours/-
lines).

Typically, the results of such an MCMC analysis are summarised by
a triangle plot or corner plot where the one-dimensional marginalised
posteriors are shown on the diagonal of an N◊N grid of subplots (for
an N -dimensional parameter space), the two-dimensional marginalised
(in our case, the two-dimensional posterior is not marginalised since
N = 2) posteriors are shown as contour lines enclosing the 68.27%
and 95.45% credible regions in the lower triangle of the grid, and the
upper triangle is kept empty. The triangle plot for this example (the
results after 100,000 steps) is shown in figure 1.4 along with the true
contours and true marginalised posteriors. One usually uses the data
from histograms or Gaussian kernel density estimation to obtain an
estimate of the marginalised posteriors, and in this case, we use data
from histograms and subsequently smooth it using a Gaussian filter.

Aside from the volume e�ects, there are other common points of criti-
cism when it comes to Bayesian inference. One of these challenges is the
dependence on prior distributions. Although this can be a very useful
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feature of Bayesian inference, the subjectivity related to the choice of
prior can lead to di�erent results in the end. Usually, when nothing is
known about the model parameter in question, the prior is chosen to be
uniform. One would naïvely think that a uniform prior does not impose
any prior beliefs, but that would be wrong. A uniform prior is only
uniform in that particular parametrisation. If a transformation is made
to another parameter, the prior would not remain uniform. An example
of this is the transformation of a uniform prior in a parameter ◊ to the
prior in the parameter „ = exp(◊), where the resulting prior in „ is
hyperbolic (Jacobian of the inverse transformation) and smaller values
will then be preferred over larger values. It is possible to determine
the least informative prior known as the Je�reys prior [15], but this is
just least informative and not completely uninformative. This is not so
much a problem as an inherent part of Bayesian analysis; one just needs
to be aware that priors carry information, and results, therefore, might
be artificially induced when the data is not su�ciently constraining.

1 . 2 FREQUENTIST PARAMETER INFERENCE

Frequentist methods for parameter inference have only recently begun
to regain popularity within cosmological parameter inference. Bayesian
parameter inference has dominated the field in the past decades, with
only a few instances of frequentist inference along the way. A reason
for this is the computational cost of performing a frequentist analysis
as global optimisation is di�cult when the evaluation of the function is
rather slow.

Frequentist statistics gets its name from its interpretation of proba-
bility. Imagine flipping a coin, hiding it, and asking a friend what the
probability of the outcome being heads is. If he is Bayesian at heart,
he will likely answer “50%, if the coin is fair”, but if he is a frequentist,
he might just say “either 100% or 0%”. In a frequentist’s mind, the
question makes little sense, since the outcome is already determined,
regardless of him knowing the result, while a Bayesian interprets the
probability as a subjective belief given the available information. The
way a frequentist deals with probability is through the frequency of out-
comes when repeating an experiment. It is defined as the fraction of
times an outcome occurs in the limit of infinitely many repetitions of
the experiment [9].
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Returning to the coin-flip example, a frequentist would instead ex-
press his confidence in a statement such as “the outcome is heads” as
being 50%. When estimating a parameter through a set of measure-
ments leading to an estimate x slightly di�erent from the true value µ,
and one determines an uncertainty ‡ based on the spread of the data
(normally distributed), it is tempting to interpret the result, i.e., x± ‡,
as a 68.27% probability of µ being in the interval [x≠ ‡,x+ ‡], but
this does not make sense in a frequentist perspective. Either µ lies in
the range, or it does not. Similarly to the coin-flip example, we may,
however, state that the statement “µ is within the range” has a 68.27%
chance of being true, or you have 68.27% confidence in the statement.

1 . 2 . 1 MAXIMUM-L IKEL IHOOD EST IMATION

The likelihood function as described in the previous section on Bayesian
inference is also widely used in frequentist methods. One such method
of parameter estimation is the maximum-likelihood estimate (MLE).
Given N statistically independent measurements of a quantity, x =
{x1,x2, ...,xN} each following the same probability density, f(x; q),
where ◊ is a set of model parameters with unknown values to be es-
timated. We can then express the likelihood function as [9]

L(x, q) =
NY

i=1
f(xi; q) , (1.11)

where f(x; q) is properly normalised. The maximum likelihood estimate
of the model parameters q are then the values q̂ that maximises the
likelihood function. In the limit of infinitely many measurements, the
estimate will converge towards the true values of the model parameters,
but for a finite number of measurements, the estimator generally has
a bias proportional to 1/N. A very useful property of the estimator
is its invariance under parameter transformations, where the maximum
likelihood estimate „̂ of a parameter „ resulting from the transformation
„ = g(◊) will be exactly given as „̂ = g(◊̂).
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In practice, it is generally more convenient to compute the negative of
the logarithm to the likelihood and then minimise this quantity referred
to as the log-likelihood. This turns the product into a sum instead,

≠lnL(x, q) = ≠
NX

i=1
lnf(xi; q) . (1.12)

The uncertainty of the estimate ◊̂ of one parameter is the interval de-
scribed by the values where the log-likelihood drops 1/2 from its max-
imum value. The estimate does not generally lie in the centre of this
interval for a small number of data points, but as that number increases,
the likelihood will converge to a Gaussian distribution due to the central
limit theorem [9], and the uncertainty can thus be computed from the
curvature (second derivative) of the log-likelihood at its peak.

1 . 2 . 2 PROF ILE L IKEL IHOODS

If the likelihood function depends on many parameters, but one is only
interested in a single parameter or a subset of parameters, it is conve-
nient to use a profile likelihood. Similarly to how Bayesian marginal-
isation decreases the dimensionality by integrating out additional pa-
rameters, profile likelihoods achieve this by optimising in the additional
parameters. If we split the parameter vector Q into two parts consisting
of the parameters of interest, q, and the parameters to optimise over, eq,
the profile likelihood is defined as

L(q) = max
eq

(L(Q)) . (1.13)

The resulting profile likelihoods have the nice properties of not being
dependent on any subjective choice (unlike Bayesian posteriors which
depend on the choice of prior), and they do not su�er from volume
e�ects like marginalised posteriors do. The location of the maximum
of a profile likelihood is thus the same (in that parameter subspace) as
the maximum of the full likelihood function.

Profile likelihoods are the focus of the paper presented in chapter 6
and the topic of profile likelihoods and the construction of confidence
intervals will thus be further explored in section 6.2. It should, however,
be mentioned that the construction of intervals based on profile likeli-
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hoods only makes sense in the large data limit where Wilks’ theorem
holds true, meaning that the Wilks likelihood ratio statistic,

W (q) = ≠2 lnL(q, êq)

L(Q̂)
, (1.14)

follows a ‰
2 distribution with dim(q) degrees of freedom [16], e.g., 1

degree of freedom for one-dimensional profile likelihoods, where L(q, êq)
refers to the likelihood where all parameters in eq assume the values
of their MLE for a given q and L(Q̂) is the global maximum for the
entire parameter space. In reality, Wilks’ theorem only applies to the
full likelihood function, so applying it to a profile likelihood assumes
that the MLEs of the parameters in eq are equal to their true values.
This is only true in the large data limit, but it can be di�cult to assess
whether or not the data is in this limit. If not in the large data limit,
one introduces an error in the results for each parameter optimised over
in the profile likelihood. In high dimensionality, this error can poten-
tially grow large for the one-dimensional profile likelihood, so interval
construction might not always be exact.





2
⇤CDM COSMOLOGY

In the era of modern-day cosmology, one model has emerged that is
particularly good at describing cosmological observations while simulta-
neously being rather simple. This model assumes a universe consisting
of radiation, baryonic matter, dark matter, and a cosmological constant,
L. The standard model of particle physics well describes the baryonic
matter and radiation, and the cosmological constant can be interpreted
as an extra term in the Einstein field equations such that it is just an
inherent property of gravitation on large scales. Dark matter, though,
has puzzled cosmologists for nearly a century, and its properties and
origin remain clouded in mystery. We have, however, been able to de-
duce some properties based on assumptions about dark matter. If we
assume it to be a particle, then observations tell us that it should be
cold, i.e., be massive and only have small velocity, and we refer to this
theoretical particle as a Weakly Interacting Massive Particle (WIMP).
Cold dark matter (CDM) together with the cosmological constant, L
thus leads to the name for this well-fitting model, the LCDM model.

This is regarded as the standard model of cosmology, but quite unsat-
isfactorily, it leaves us with some unanswered questions. Even though
the LCDM model fits our observations well, there are some discrepan-
cies and anomalies that it cannot accommodate. One such discrepancy
is the Hubble tension which we will go over in the next section. During
this chapter we will also have a look at one of the types of measurements
particularly relevant to this thesis, the cosmic microwave background
radiation, and and we will lastly discuss the equations governing the evo-
lution of matter and energy as well as those describing the formation of
structure in the universe.
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2 . 1 OBSERVATIONS AND THE HUBBLE TENS ION

The driving power behind the field of cosmology is the large variety
of observational data collected by di�erent national and international
experiments over the course of several decades. It is these observations
and experiments that inspire theorists to construct models of the uni-
verse that neatly predict the observations. Since we only have one single
universe to observe, we cannot easily test cosmological theories as if ev-
erything were reproducible in a laboratory, and we thus rely heavily on
these observations to indirectly infer our results.

Generally speaking, the observations can be divided into two cate-
gories: early-time observations and late-time observations, depending
on when the observed light was emitted. An example of early-time ob-
servations is the cosmic microwave background (CMB) which is light
emitted from the last scattering of photons on electrons in the early
universe, whereas an example of a late-time observation is that of the
large-scale structure of matter.

Almost a century ago in 1929, the American astronomer Edwin Hub-
ble cemented the idea of an expanding universe by demonstrating an
increasing receding velocity of more distant galaxies, known as Hubble’s
law:

v = H0D. (2.1)

The constant of proportionality between the distance, D, and reced-
ing velocity, v, is known as the Hubble constant, H0, and corresponds
to the rate of expansion of the universe today. The best estimates of
this constant from direct measurements come from Supernova type Ia
data since these function as so-called standard candles, which makes
very large distance measurements quite accurate. At the time of
writing, the current best estimate from the SH0ES collaboration is
(73.04± 1.04) km s≠1 Mpc≠1 [17].

This parameter can, however, also be inferred from early-time mea-
surements like that of the CMB. In this case, one has to assume
an underlying model of the universe1. In the standard LCDM
model, the value inferred from CMB by the Planck collaboration is
(67.4± 0.5) km s≠1 Mpc≠1 [21]. This expresses a tension in cosmology

1 In reality, the same is true for the direct measurement, since the relationship between
distance and redshift depends on the cosmological model.
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Figure 2.1: The evolution of the early-time (red) and late-time (blue) mea-
surements of the Hubble constant in the past couple of decades. This is only
a selection of the measurements in this period of time, but these have been
chosen to highlight the discrepancy in a simple manner. The three unlabelled
measurements are (in chronological order) from the Hubble Space Telescope
Key Project [18], the Chandra X-ray Observatory [19], and Cosmicflows-2 [20].

of more than 5 standard deviations known as the Hubble Tension, and
it is one of the great unsolved problems of modern-day cosmology. As
data has progressively improved, uncertainties have lowered and the
tension has worsened. This is depicted in figure 2.1 which shows the
evolution of the late-time (blue) and early-time (red) measurements in
the past couple of decades. It is possible that this tension is solely due
to unknown systematics, but the far more interesting reason would be
new physics beyond the LCDM model. This has been investigated for
several years with many di�erent types of models, some of which will
be presented in chapter 3.

Both early-time and late-time measurements are important to accu-
rately test the prediction power of a new proposed cosmological model.
Some of the popular observational experiments widely used in cosmo-
logical analyses include the following:
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Early-time measurements

• Cosmic Microwave Background (CMB): Measurements of the pho-
tons from their last scattering on electrons, 380.000 years after the
Big Bang.

• Big Bang Nucleosynthesis (BBN): Measurements of the primor-
dial abundance of light elements produced in the first few minutes
after the Big Bang.

• Primordial gravitational waves: Measurements of the gravita-
tional wave background in the nanohertz frequency using pulsar
timing arrays (PTAs).

Late-time measurements

• Baryonic Acoustic Oscillations (BAO): Measurements of the char-
acteristic scale imprinted by oscillations in the photon-baryon
plasma prior to recombination.

• Weak gravitational lensing: Measurements of matter distributions
by observing the distorting e�ects of weak gravitational lensing.

• Supernovae type Ia: Measurements of the distances to faraway
galaxies by using SNe type Ia as standard candles.

• Galaxy surveys: Measurements of matter distributions and large
scale structure by measuring distances to galaxies.

• Gravitational waves from mergers: Measurements of gravitational
waves due to mergers of stellar black holes and neutron stars using
laser interferometry.

The early-time measurement of the CMB is most relevant to the results
presented in this thesis, so we will have a detailed look at this in the
next section.
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2 . 2 THE COSMIC MICROWAVE BACKGROUND

One of the most important discoveries in modern cosmology, allowing for
measurements of great precision and thus a high constraining power of
theoretical models, is the discovery of the cosmic microwave background
(CMB). When measuring the radiation received from all directions in
space and subtracting that of astrophysical objects and phenomena,
what we are left with seems to be isotropic microwave radiation. Not
only that, the radiation seems to have a near-perfect thermal blackbody
spectrum with a temperature of 2.7255 K. This suggests that the radi-
ation is a relic from a hot and dense state of the universe, and thus
further supports the idea of the Big Bang Theory [22].

When examining the radiation more closely, it becomes apparent that
there are in fact anisotropies in the distribution. First of all, there
is a dipole distortion resulting in one half of the sky being slightly
blueshifted and similarly the other half slightly redshifted. This is due
to the peculiar velocity of our Solar System relative to the comoving rest
frame in which the CMB is isotropic [22]. Furthermore, when removing
the dipole distortion, the remaining fluctuations have a very small am-
plitude and are in the order of 10≠5 K. Despite this, our observations of
these anisotropies are very detailed, with the sensitivity of the Planck
satellite being high enough to distinguish temperature variations of only
≥10≠6 K [23].

These small anisotropies are a relic from the anisotropies in the early
universe. At the age of approximately 380,000 years, the universe cooled
enough for protons and electrons to combine into neutral hydrogen
atoms. This is known as recombination. Before this sudden change,
the photons were strongly coupled to the electrons and protons through
Thomson scattering,

“ + e
≠ æ “ + e

≠ ,

resulting in an opaque state of the universe. When neutral atoms
(mostly hydrogen and helium) were formed instead, the photons could
no longer scatter o� any free charged particles and the universe thus be-
came transparent. The photons emitted from this last scattering form
the cosmic microwave background2. The anisotropies in the plasma of

2 It is microwave radiation today due to it being subjected to cosmological redshift as
the universe expands.
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coupled photons and baryons are thought to have arisen from quantum
fluctuations before the period of inflation, and they were the basis of
all structure formation in the later evolution of the universe.

2 . 2 . 1 SPHER ICAL HARMONICS EXPANS ION

In order to statistically describe the anisotropies in the CMB, it is useful
to describe the fluctuations as a di�erence between the temperature
T (n̂) observed in a direction characterised by the unit vector n̂ and the
mean temperature ÈT Í when averaging across the entire sky [24],

DT (n̂) © T (n̂)≠ ÈT Í , ÈT Í © 1
4fi

Z
d2
n̂T (n̂) . (2.2)

We can then expand this quantity in spherical harmonics,

DT (n̂) =
ŒX

¸=0

¸X

m=≠¸
a¸mY

m

¸
(n̂) , (2.3)

where Y m

¸
(n̂) is the spherical harmonic function of degree ¸ and order

m. Since we are expanding a real function, the expansion coe�cients
must satisfy the relation

a
ı

¸m
= a¸≠m , (2.4)

where the ı denotes complex conjugate, and we are using the convention
of the spherical harmonics without the phase factor of (≠1)m on the
complex conjugate, i.e., Y m

¸
(n̂)ı = Y

≠m
¸

(n̂) [24]. If we assume the
universe to be rotationally invariant on averages, such that any average
over the possible positions from which to view the CMB (denoted by
È...Í) will be independent of n̂, it follows that the average of the product
of two expansion coe�cients must take the form

Èa¸maı¸ÕmÕÍ = ”¸¸Õ”mmÕC¸ , (2.5)

where ”ij is the Kronecker delta and C¸ is the variance of the a¸m coef-
ficients for a given ¸ [25]. We can now write the rotationally invariant
correlation between the temperature fluctuations of two separate points
on the sky described by the unit vectors n̂ and n̂

Õ,
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ÈDT (n̂)DT (n̂Õ)Í =
ŒX

¸=0

¸X

m=≠¸
C¸Y

m

¸
(n̂)Y ≠m

¸
(n̂Õ)

=
ŒX

¸=0

2¸+ 1
4fi C¸P¸(n̂ · n̂Õ) ,

(2.6)

where P¸ are the Legendre polynomials and the dot product n̂ · n̂Õ = cos◊
describes an angular separation of ◊ on the sky. We can now exploit
the orthogonality of the Legendre polynomials, i.e.,

Z 1

≠1
dxP¸(x)P¸Õ(x) = ”¸¸Õ

2
2¸+ 1 , (2.7)

and find an expression for C¸ by integrating both sides of equation (2.6)
multiplied by P¸ over the domain,

Z
d2
n̂ d2

n̂
Õ
P¸(n̂ · n̂Õ)ÈDT (n̂)DT (n̂Õ)Í

=
Z

d2
n̂ d2

n̂
Õ
P¸(n̂ · n̂Õ)

ŒX

¸Õ=0

2¸Õ + 1
4fi C¸ÕP¸Õ(n̂ · n̂Õ) ,

(2.8)

where d2
n̂ and d2

n̂
Õ are the solid angles (the surface element on the unit

sphere) corresponding to the two unit vectors n̂ and n̂
Õ. In order to use

the orthogonality, we need to change integration variables on the right-
hand side of equation (2.8) such that the integration limits are [≠1, 1].
The dot product, n̂ · n̂Õ, of the unit vectors, is equal to the cosine of
their angle of separation, ◊, and this quantity has exactly [≠1, 1] as its
range. We can then change integration variables to this dot product
along with the azimuthal angles „ and „

Õ and a factor of 2 to ensure
the preservation of the total volume of the integral,

Z
d2
n̂ d2

n̂
Õ
P¸(n̂ · n̂Õ)ÈDT (n̂)DT (n̂Õ)Í

= 2
Z 1

≠1
d(n̂ · n̂Õ)P¸(n̂ · n̂Õ)

ŒX

¸Õ=0

2¸Õ + 1
4fi C¸ÕP¸Õ(n̂ · n̂Õ)

Z 2fi

0
d„
Z 2fi

0
d„Õ

= 2(2fi)2
Z 1

≠1
d(n̂ · n̂Õ)P¸(n̂ · n̂Õ)

ŒX

¸Õ=0

2¸Õ + 1
4fi C¸ÕP¸Õ(n̂ · n̂Õ) ,

(2.9)
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where each „ integral results in a factor of 2fi since the expression has no
dependence on the azimuthal angles. We can now use the orthogonality
of the Legendre polynomials and extract C¸ from the sum,

Z
d2
n̂ d2

n̂
Õ
P¸(n̂ · n̂Õ)ÈDT (n̂)DT (n̂Õ)Í

= 2(2fi)2
Z 1

≠1
d(n̂ · n̂Õ)P¸(n̂ · n̂Õ)2 2¸+ 1

4fi C¸

= 2(2fi)2 2
2¸+ 1

2¸+ 1
4fi C¸

= 4fiC¸ .

(2.10)

This leads us to the equation for the C¸ coe�cients,

C¸ =
1
4fi

Z
d2
n̂ d2

n̂
Õ
P¸(n̂ · n̂Õ)ÈDT (n̂)DT (n̂Õ)Í . (2.11)

When averaging over the entire sky, we are not accounting for the
fact that we only observe the CMB from one point in space while our
statistical treatment of it suggests that the averages denoted by È...Í
are really averages over possible positions in the universe from which
the CMB can be observed [24]. This results in the observed C

obs
¸

coef-
ficients being slightly di�erent since we cannot average over positions
from which to view the CMB. The observed coe�cients are instead only
averaged over the order m of which there are 2¸+ 1 for a given multipole
¸,

C
obs
¸

© 1
2¸+ 1

¸X

m=≠¸
a¸ma¸≠m

=
1
4fi

Z
d2
n̂ d2

n̂
Õ
P¸(n̂ · n̂Õ)DT (n̂)DT (n̂Õ) .

(2.12)

The mean squared relative di�erence between the observed and theoret-
ical coe�cients is known as cosmic variance, and it is a fundamental un-
certainty in the knowledge that we can get from the C¸ coe�cients [25].
We can think of it in terms of the number of orders m for a given mul-
tipole ¸. Only a few values of m are available for a small multipole ¸

(2¸+ 1 to be exact), which means that we only average over a few num-
bers in this case and thus obtain a result with a large uncertainty. For
larger values of ¸, we will, on the contrary, have many available values
of m to average over resulting in a low uncertainty. The multipole ¸ is a



lcdm cosmology 27

measure of the angular separation on the sky, i.e., ◊ ¥ 180¶/¸, with low
values of ¸ corresponding to large angular scales and high values cor-
responding to small scales. This then translates to the C¸ coe�cients
being much more precisely measured for small angular scales compared
to large scales. We can quantify the cosmic variance using the first
equality in equation (2.12),

*✓
C¸ ≠C

obs
¸

C¸

◆2+
= 1≠ 2

C
obs
¸

C¸

+

¸X

m=≠¸

¸X

mÕ=≠¸
Èa¸ma¸≠ma¸mÕa¸≠mÕÍ

(2¸+ 1)2C2
¸

.

(2.13)

For Gaussian temperature fluctuations, the multipole coe�cients a¸m
will also have a Gaussian distribution. Furthermore, the mean of the
a¸m coe�cients is vanishing, i.e., Èa¸mÍ = 0, since the temperature
fluctuations have zero mean as well, resulting in the average in the
double sum being separable due to Isserlis’ theorem [24, 26],

Èa¸ma¸≠ma¸mÕa¸≠mÕÍ = Èa¸ma¸≠mÍÈa¸mÕa¸≠mÕÍ
= Èa¸ma¸mÕÍÈa¸≠ma¸≠mÕÍ
= Èa¸ma¸≠mÕÍÈa¸≠ma¸mÕÍ .

(2.14)

Looking at these terms in context, we can get their individual contribu-
tions to the double sum (adopting the

P
mmÕ notation for the double

sum),
X

mmÕ

Èa¸ma¸≠mÍÈa¸mÕa¸≠mÕÍ =
X

mmÕ

”¸¸”mmC¸”¸¸”mÕmÕC¸

= (2¸+ 1)2
C

2
¸

,

X

mmÕ

Èa¸ma¸mÕÍÈa¸≠ma¸≠mÕÍ =
X

mmÕ

”¸¸”m≠mÕC¸”¸¸”m≠mÕC¸

= (2¸+ 1)C2
¸

,

X

mmÕ

Èa¸ma¸≠mÕÍÈa¸≠ma¸mÕÍ =
X

mmÕ

”¸¸”mmÕC¸”¸¸”mmÕC¸

= (2¸+ 1)C2
¸

.

(2.15)
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We can now substitute this into equation (2.13) and obtain an expres-
sion for the cosmic variance,
*✓

C¸ ≠C
obs
¸

C¸

◆2+
= 1≠ 2

C
obs
¸

C¸

+
(2¸+ 1)2

C
2
¸

+ 2(2¸+ 1)C2
¸

(2¸+ 1)2C2
¸

= 2≠ 2
C

obs
¸

C¸

+
2

2¸+ 1

¥ 2
2¸+ 1 ,

(2.16)

where we have used the fact that C
obs
¸ /C¸ is very close to unity.

2 . 2 . 2 THE CMB POWER SPECTRA

The C¸ coe�cients represent the contribution to the total variance of the
field from anisotropy on angular scales corresponding to the multipole
¸. It is, however, customary to multiply the coe�cients with a factor
of ¸(¸+ 1)/(2fi)ÈT Í2 to account for the increased number of modes for
higher values of ¸. The factor of ⁄ = ¸(¸+ 1) arises from the fact that
the spherical harmonics are the eigenfunctions of the Laplacian on the
surface of a sphere with eigenvalues ≠⁄, i.e.,

r
2Ò2

Y
m

¸
(◊,„) = ≠¸(¸+ 1)Y m

¸
(◊,„) , (2.17)

and the factor of 2fi is a conventional normalisation to ensure consis-
tency with the units. The quantity that we usually depict is then given
by

DTT

¸
=

¸(¸+ 1)C¸

2fi ÈT Í2 , (2.18)

where the superscript TT refers to this representing the variance of the
temperature fluctuations.

This quantity can now be used to make the CMB temperature power
spectrum describing the temperature anisotropies on di�erent scales.
This is shown in figure 2.2 where the observed coe�cients are plotted
along with the theoretical prediction best describing the data within
the context of the LCDM model. We can clearly see the e�ects of
cosmic variance here since the errors on larger scales are much more
profound than on small scales. There is a very noticeable wave struc-
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Figure 2.2: The angular power spectrum for CMB temperature fluctuations.
The observed data from Planck [21] is shown as blue points with error bars
and the best-fitting theoretical prediction within the LCDM model is shown
as an orange line. The vertical dashed line at ¸ = 30 marks the transition
between a logarithmic axis and a linear axis.

ture in the power spectrum which provides a very detailed description
of the universe at the time of recombination.

Prior to last scattering, the plasma of photons, electrons, and nu-
cleons was not at all static or homogeneous. Overdense regions in the
plasma due to slight perturbations collapse gravitationally and grow un-
til the plasma is heated enough for the pressure to become too great and
start counteracting the gravitational collapse, leading to re-expansion.
The plasma will then cool again until the pressure drops and gravity
once again can collapse the plasma. This leads to oscillations or sound
waves in the plasma on di�erent scales and these oscillations are ex-
actly what is captured in the CMB power spectrum. At the time of
last scattering, the oscillations stopped and the modes at their extrema
at this time are the ones exhibiting the most anisotropy in the power
spectrum, i.e., the peaks. The first peak corresponds to the largest
mode that never experienced a re-expansion by the pressure, so this
marks the maximum proper distance a sound wave could have travelled
between the Big Bang and last scattering, also known as the sound hori-
zon, rs [22]. The second peak is likewise a mode that has collapsed and
expanded once, the third peak is a mode that has collapsed, expanded
and then collapsed again, and so on.
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We notice as well that higher peaks in the power spectrum are damp-
ened and the spectrum seems to flatten for larger multipoles. The reason
for this damping e�ect, known as di�usion damping, can be found in
the coupling between the photons, electrons, and nucleons in the plasma
before recombination. The universe was not perfectly opaque prior to
last scattering since the photons did have a mean free path and the
damping occurs at physical scales comparable to this mean free path.
The photons are able to mix on these scales and it averages out the
anisotropies in the temperature field [25].

Apart from the intrinsic temperature fluctuations, there are a few
more e�ects a�ecting the CMB power spectrum that we may observe
today [24]:

• The Doppler e�ect a�ects the emitted photons from last scattering
due to fluctuations in the velocity field.

• The Sachs-Wolfe e�ect is the gravitational redshifting and
blueshifting of the photons from last scattering due to fluctua-
tions in the gravitational potential.

• The integrated Sachs-Wolfe e�ect a�ects the photons after last
scattering and up until today. When the universe expands,
large gravitational wells will change over time fast enough for
a photon entering and exiting to experience a net blueshift
or redshift. This only occurs when matter is not the domi-
nating contribution to the energy density. This means that
there are two contributions, the late integrated Sachs-Wolfe
e�ect and the early integrated Sachs-Wolfe e�ect, for the dark
energy domination in the late universe and the radiation domi-
nation still in e�ect immediately after last scattering, respectively.

These all contribute to the observed CMB power spectrum as depicted
in figure 2.3.

Apart from the temperature fluctuations, there are also polarisation
fluctuations in the CMB. These arise from the Thomson scattering at
the time of recombination. The scattering allows for transverse radia-
tion to be completely transmitted while radiation parallel to the outgo-
ing direction is stopped [25]. In the isotropic case, photons will scatter
o� the charged particle from all directions and the net result will be
unpolarised radiation. In order to produce polarisations we need a
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Figure 2.3: Di�erent contributions to the angular power spectrum for
CMB temperature fluctuations. The contributions have been computed us-
ing class [27].

quadrupole anisotropic pattern (since a dipole only leads to cancella-
tions between radiation from hot and cold regions of similar departure
from the mean temperature), and this quadrupole moment is small prior
to recombination. Only near the end of recombination can a significant
quadrupole moment form due to di�usion of photons between hot and
cold regions.

Only the E-mode polarisation is sourced by scalar perturbations and
we need tensor perturbations in order to have non-zero B-mode polari-
sation. Because the signal of tensor perturbations is much smaller than
that of scalar perturbations, they are di�cult to measure and that holds
true for the B-mode polarisation as well. Tensor perturbations are fun-
damentally di�erent from scalar perturbations in the sense that they
correspond to primordial gravitational waves generated during inflation
while scalar perturbations are perturbations in density and potential
of matter and energy. Although tensor perturbations also contribute
to the E-mode polarisation, it is not easy to split the observed signal
up into the contributions from scalar and tensor perturbations, so we
cannot currently conclude a detection of tensor perturbations (and thus
primordial gravitational waves) from the E-mode polarisation alone. B-
mode polarisation in the CMB can, however, only have a contribution
from tensor perturbations, so detection of this would be a clear indi-
cation of primordial gravitational waves and thereby also inflationary
models producing gravitational waves [25]. We have yet to obtain a
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Figure 2.4: Angular power spectra for temperature fluctuations (top), E-
mode polarisation fluctuations (bottom), and a cross-correlation between the
two (middle). The figure includes the observed data from Planck [21] as well
as the theoretical spectra for the set of parameters (within the LCDM model)
that fit all three sets of data best. The vertical dashed line at ¸ = 30 marks
the transition between a logarithmic axis and a linear axis.

clear detection of the B-mode polarisation in support of tensor per-
turbations (foreground e�ects and gravitational lensing can induce B-
modes as well) although the tensor-to-scalar ratio has been constrained
by various experiments, including the BICEP/Keck experiments [28].
It is thus more common to only include the E-mode polarisation along
with a cross-correlation between fluctuations in E-mode polarisation
and temperature fluctuations. The three di�erent CMB power spectra,
commonly referred to as TT , TE, and EE, are shown in figure 2.4.

2 . 3 HOMOGENOUS AND ISOTROPIC COSMOLOGY

On large scales, the universe seems quite homogeneous and isotropic
given the fact that the matter distributions look similar no matter where
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we look3. It is thus useful to consider a completely smooth, homoge-
neous, and isotropic universe in the context of general relativity.

The metric used to describe an expanding universe is the Friedmann-
Robertson-Walker (FRW) metric relating the coordinate distance, dxµ,
and the physical distance, ds, through

ds2 =
3X

µ,‹=0
gµ‹dxµdx‹ , (2.19)

where the Greek letters, µ and ‹, as indices represent the components
of four-vectors with the 0th component being the temporal component
and the three other components being the spatial components, while
Latin letters as indices are used to denote just the spatial components.
The FRW metric, gµ‹ , in an expanding, flat universe4 is given as [25]

gµ‹ =

0

BBBBBBB@

≠1 0 0 0

0 a
2(t) 0 0

0 0 a
2(t) 0

0 0 0 a
2(t)

1

CCCCCCCA

, (2.20)

with a(t) being the scale factor of the universe with a value of 1 at the
time today, t0, i.e., a0 © a(t0) = 1. The metric describes the geometry
of the universe, but we still need something to relate its geometry and
its energy density. This is exactly the role of the Einstein equations:

Gµ‹ © Rµ‹ ≠
1
2gµ‹R = 8fiGTµ‹ , (2.21)

where Gµ‹ is the Einstein tensor, Rµ‹ is the Ricci tensor, R is the Ricci
scalar, G is Newton’s gravitational constant, and Tµ‹ is the stress-energy
tensor. The Ricci scalar is a contraction of the Ricci tensor which in
turn is purely related to the geometry depending on the metric and
its derivatives. The left-hand side thus describes the geometry of the
universe, while the right-hand side describes the energy contents.

3 With distances confined to the late universe where we expect similar amounts of
structure.

4 Including curvature is certainly possible but will not be treated in this thesis.
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In a perfect isotropic fluid, we cannot have any net transport of mo-
mentum, and the stress-energy tensor thus becomes diagonal (in its
mixed tensor form to avoid factors of the scale factor),

T
µ

‹ =

0

BBBBBBB@

≠fl 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

1

CCCCCCCA

, (2.22)

where fl is the energy density of the fluid and P is the pressure. From
this, we can now derive two useful equations. The first one is obtained
from the (0, 0)th component of the Einstein equations [29],

H(t) ©
✓
ȧ(t)
a(t)

◆2
=

8fiG
3 fl(t) , (2.23)

and this is the Friedmann equation for a flat universe, where we have
defined the Hubble parameter, H(t), describing the rate of expansion
at time t, and the dot (˙) denotes the derivative with respect to proper
time. The second equation is obtained from the conservation of the
stress-energy tensor, which corresponds to the vanishing of its covariant
derivative [25]. From the ‹ = 0 components, we have that,

T
µ

0;µ =
ˆT

µ

0
ˆxµ

+ Gµ–µT
–

0 ≠ G–

0µT
µ

– = 0 , (2.24)

where

Gµ
–—

=
g
µ‹

2

✓
ˆg–‹

ˆx—
+

ˆg—‹

ˆx–
≠

ˆg–—

ˆx‹

◆
(2.25)

denotes the Christo�el symbol. This leads to the continuity equation,

ˆfl

ˆt
+ 3 ȧ

a
(fl+ P ) = 0 . (2.26)

We now have two equations featuring the quantities, a, fl and P , so we
need one more in order to solve for the evolution of the universe. This
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Figure 2.5: The evolution of the energy densities of matter, radiation, and
a cosmological constant in the LCDM model. Di�erent components dominate
di�erent epochs of the evolution. The dashed vertical lines signify the scale
factors of the matter-radiation and matter-L equalities.

last equation relates the pressure and the energy density, and is known
as the equation of state,

P = wfl , (2.27)

where the equation-of-state parameter w depends on the fluid. For
nonrelativistic matter, we have that wM = 0 since it exhibits vanishing
pressure, for radiation, we have that wR = 1/3, and for a cosmological
constant, we have that wL = ≠1, thus resulting in negative pressure.
The cosmological constant (as an extra term in the Einstein tensor)
may equivalently be interpreted as dark energy, even though more
elaborate models of dark energy exist whose e�ects do not equal those
of a cosmological constant. For the remaining part of this chapter, we
will use these two terms interchangeably about the component with
wL = ≠1.

2 . 3 . 1 BACKGROUND EVOLUTION

With these three equations in our toolkit, we may now describe the ex-
pansion and the background evolution of universes of di�erent composi-
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Figure 2.6: The evolution of the scale factor, a(t), for universes of di�erent
compositions. It is shown for the single-component universes consisting of
matter, radiation, and a cosmological constant, along with that of the LCDM
model with parameters in best agreement with observations.

tions. From equations (2.26) and (2.27) we get the following evolution
of the energy densities of di�erent components:

flM(t) = flM(t0) a(t)
≠3 ,

flR(t) = flR(t0) a(t)
≠4 ,

flL(t) = flL(t0) ,

fl
Õ(t) = fl

Õ(t0) a(t)
≠3(1+wÕ) ,

(2.28)

where we have included the energy density fl
Õ of a general component

with equation-of-state parameter wÕ. Cosmological observations tell us
that matter contributes ≥30% to the total energy density today while
radiation contributes a negligible amount of less than a 10≠2% and
dark energy (or cosmological constant) contributes the remaining ≥70%.
In order to achieve this according to the evolutions described in equa-
tion 2.28, we must have had a period of radiation domination in the
early universe followed by a period of matter domination and lastly, a
period dominated by dark energy. This is shown in figure 2.5 where the
individual energy densities are graphed as a function of the scale factor.

Using the Friedmann equation we can furthermore compute the evo-
lution of the scale factor for universes of di�erent compositions. For a
universe with only a single component, we may insert the expression
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of the component’s energy density in terms of the scale factor into the
Friedmann equation,

✓
ȧ(t)
a(t)

◆2
=

8fiG
3 fl0a(t)

≠3(1+w) , (2.29)

where fl0 = fl(t0). Solving this di�erential equation yields an expression
for the scale factor as a function of time,

a(t) =

✓
t

t0

◆2/(3+3w)

, w ”= ≠1 . (2.30)

The scale factor for a universe with only a cosmological constant cannot
be described by this equation. We can, however, derive the expression
for the scale factor directly from the Friedmann equation by setting
w = ≠1. This results in the following expression valid for a flat universe
with only a cosmological constant,

a(t) = eH0(t≠t0) , H0 =

✓
8fiG

3 flL,0

◆1/2
. (2.31)

Universes of two components can also (to some extent) be treated an-
alytically, thus making it possible to describe the evolution around
matter-radiation equality and matter-L equality. A universe with three
or more components, however, requires a numerical solution of the Fried-
mann equation. The scale factor as a function of time can be seen in
figure 2.6 for di�erent single-component universes as well as for the
three-component model matching our observations.

2 . 4 INHOMOGENEIT IES AND ANISOTROPIES

It is clear from the fact that you are reading this thesis, that our universe
is not homogeneous and isotropic on all scales. If that were the case,
no galaxies, stars, planets, or theses would exist. We thus owe our very
existence to the e�ects described in this section.

Small perturbations in the early universe have grown into all the
galaxies, clusters, etc. that we observe today through the process of
structure formation. In this section, we will have a look at the mecha-
nisms behind this phenomenon and describe them mathematically using
linear perturbation theory.
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2 . 4 . 1 THE BOLTZMANN EQUATION

When statistically describing thermodynamical systems away from equi-
librium, it is necessary to consider the phase space of the system. This
is the six-dimensional space described by three dimensions of position
and three dimensions of momentum. The phase space distribution func-
tion, f(xi, pj , · ), of the particles in the system describes the statistical
state of the system at conformal time · , and the integral of it over the
entire six-dimensional phase space gives the number of particles in the
system. The distribution function can give us all the statistical infor-
mation of the system, so we can similarly find expressions of thermody-
namical quantities, such as the number density, the energy density, and
the pressure, as weighted integrals of the distribution function. Bosons
and fermions behave di�erently in thermodynamical systems due to
the Pauli exclusion principle for fermions, and in equilibrium, they fol-
low a Bose-Einstein distribution (≠ sign) or a Fermi-Dirac distribution
(+ sign), respectively [30],

f(‘) =
gs

h
3
P

1
e‘/(kBT ) ± 1

, (2.32)

where ‘ =
p
q2 + a2m2 with q as the magnitude of the comoving mo-

mentum given by the product of the scale factor and magnitude of the
proper momentum, hP is the Planck constant, kB is the Boltzmann
constant, gs is the number of spin degrees of freedom, and T denotes
the temperature of the particles.

When a system is out of equilibrium, the evolution of the phase space
distribution is governed by the Boltzmann equation [25],

df
dt = C[f ] , (2.33)

where the right-hand side is a functional expressing all the possible
collision terms of the distribution function. In the case of no collisions
between particles, e.g. for cold dark matter, the right-hand side is zero.
It is useful to express the left-hand side in terms of its partial derivatives
using the chain rule,

df
d· =

ˆf

ˆ·
+

ˆf

ˆxi
· dxi

d· +
ˆf

ˆq

dq
d· +

ˆf

ˆn̂i
· dn̂i

d· = C[f ] , (2.34)
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where we have split the comoving momentum dependence into its mag-
nitude, q, and its direction n̂

i. Similarly to how we can integrate the
distribution function with di�erent weights to obtain thermodynamical
quantities, we can obtain conservation equations by taking the moments
of the Boltzmann equation.

2 . 4 . 2 L INEAR PERTURBATION THEORY IN
COSMOLOGY

Equipped with the Boltzmann equation and Einstein equations, we can
now introduce perturbations to the homogenous and isotropic solution.
In the conformal Newtonian gauge, these perturbations are described
by two scalar potentials, Â and „, modifying the metric [30], i.e.,

gµ‹ =

0

BBBBBBB@

≠(1 + 2Â) 0 0 0

0 a
2(1≠ 2„) 0 0

0 0 a
2(1≠ 2„) 0

0 0 0 a
2(1≠ 2„)

1

CCCCCCCA

. (2.35)

We furthermore introduce perturbations to the stress-energy tensor as
T
µ
‹ = T̄

µ
‹ + ”T

µ
‹ , where the bar (¯) denotes the background quantity,

and ” denotes a perturbation to the subsequent quantity. This intro-
duces o�-diagonal components, and the perturbed stress-energy tensor
becomes

T
0
0 = ≠(”̄ + ”fl) ,

T
0
i = (”̄ + P̄ )vi ,

T
i

j = (P̄ + ”P )”ij + Si

j ,
(2.36)

where vi is a small coordinate velocity of the fluid and Si

j
is the traceless

component of T i
j
.

Using the perturbed metric and the perturbed stress-energy tensor,
one can compute the perturbed Einstein equations (most conveniently
expressed in Fourier space with k as the wavenumber). Given small
perturbations, it is su�cient to linearise the equations by only keeping
terms up to first order. These equations relate the metric perturbations
with perturbations of matter and energy, thus describing how inhomo-
geneities in matter and energy distort spacetime and similarly how mat-
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ter and energy distributions evolve due to these distortions. Defining the
quantities ” © ”fl/fl̄, ◊ © ik

j
vj , and ‡ © ≠(k̂ik̂j ≠ ”ij/3)Si

j
/(fl̄ + P̄ ),

where k̂i is the direction of the wave vector, and using w = P/fl, we
can arrive at the following two equations:

”̇ = ≠(1 +w)
�
◊≠ 3„̇

�
≠ 3 ȧ

a

✓
”P

”fl
≠w

◆
” ,

◊̇ = ≠ ȧ
a
(1≠ 3w)◊≠ ẇ

1 +w
◊ +

”P/”fl
1 +w

k
2
”≠ k

2
‡ + k

2
Â ,

(2.37)

which are valid for any uncoupled fluid, i.e., no collisions in the
Boltzmann equation. The dependence on the anisotropic stress, ‡, in
the equation for the divergence, ◊, of the fluid velocity tells us that
this is not a closed set of equations. Additional equations for higher
moments are needed, and just as the equation for ” includes ◊ and the
equation for ◊ includes ‡, the equation for the lth moment will generally
depend on the (l + 1)th moment. The equations for all moments can
be found through the Boltzmann equation, which is also needed to
introduce collisions into the fluid.

Cold dark matter, however, is su�ciently described by the two equa-
tions above since we can treat it as a pressureless fluid, i.e., w = ẇ = 0
and ‡ = 0,

Perturbation equations for cold dark matter

”̇cdm = ≠◊cdm + 3„̇ ,

◊̇cdm = ≠ ȧ
a
◊cdm + k

2
Â ,

(2.38)

where the subscript “cdm” refers to cold dark matter.

Using the Boltzmann equation requires a slightly di�erent approach to
the perturbations. We now introduce a perturbation Y to the distribu-
tion function instead,

f(xi, q, n̂j , · ) = f0(q)
�
1 + Y(xi, q, n̂j , · )

�
. (2.39)
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Using this perturbation and the Boltzmann equation as written in equa-
tion (2.34), we can arrive at the following first-order perturbation equa-
tion in Fourier space [30],

ˆY
ˆ·

+ i
q

‘
(k · n̂)Y +

d lnf0
d ln q


„̇≠ i

‘

q
(k · n̂)Â

�
=

1
f0
C[f ] . (2.40)

This equation may be used to derive perturbation equations for the
other components, such as neutrinos, baryons, and photons.

Neutrinos with mass m can be treated by expanding the perturbation
Y in Legendre polynomials, Pl,

Y(k, n̂, q, · ) =
ŒX

l=0
(≠i)l(2l+ 1)Yl(k, q, · )Pl(k · n̂) . (2.41)

This leads to equations for infinitely many Yl coe�cients, but l Ø 2 can
be expressed through a recursion relation,

Perturbation equations for neutrinos

Ẏ‹

0 = ≠qk
‘

Y‹

1 ≠ „̇
d lnf0
d ln q ,

Ẏ‹

1 =
qk

3‘ (Y‹

0 ≠ 2Y‹

2)≠
‘k

3qÂ
d lnf0
d ln q ,

Ẏ‹

l
=

qk

(2l+ 1)‘
⇥
lY‹

l≠1 ≠ (l+ 1)Y‹

l+1
⇤

, l Ø 2 ,

(2.42)

where the “‹” superscript denotes that this is the Boltzmann hierarchy
for neutrinos.

Photons are simpler in the sense that one can integrate out the mo-
mentum dependence due to them being massless, but they are also more
complicated since they couple to baryons through Thomson scattering
prior to recombination. This means that there are non-zero collision
terms that depend on polarisation. We define the quantities F“(k, n̂, · )
and G“(k, n̂, · ) which are the momentum averaged perturbation of the
phase space distribution summed over polarisations, and the di�erence
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of two linear polarisation components, respectively [30]. The right-hand
side of the Boltzmann equation then reads,

C[f ] =

✓
ˆF“

ˆ·

◆

C

+

✓
ˆG“

ˆ·

◆

C

. (2.43)

Both F“ and G“ can be expanded in Legendre polynomials and the col-
lision terms can thus be expressed in terms of the expansion coe�cients,
F
“

l
and G

“

l
, the velocity divergences of photons and baryons, ◊“ and ◊b,

the number density of electrons, ne, and the cross-section for Thom-
son scattering, ‡T . Including these terms in the Boltzmann equations
likewise results in infinitely many coupled di�erential equations,

Perturbation equations for photons

”̇“ = ≠4
3◊“ + 4„̇ ,

◊̇“ = k
2
✓

1
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2
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✓
”l,0 +

”l,2
5

◆�
,

(2.44)

where we notice that the equations for ”“ and ◊“ are exactly what was
expected from equations (2.37) apart from the extra term describing
the e�ects of Thomson scattering.

Baryons are also influenced by collisions due to their coupling to pho-
tons before recombination. Baryons are, however, also nonrelativistic
matter, so we only get 2 equations as with cold dark matter. We can
simply use equations (2.37) to find the equations for baryons and then
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add the coupling term due to Thomson scattering. Looking at the equa-
tion for ◊“ , we can derive the necessary extra term in order to satisfy
momentum conservation. The equations for baryons then become

Perturbation equations baryons

”̇b = ≠◊b + 3„̇ ,

◊̇b = ≠ ȧ
a
◊b + c

2
sk

2
”b + k

2
Â +

4fl̄“
3fl̄b

ane‡T (◊“ ≠ ◊b) ,

(2.45)

where the sound speed c
2
s = ”Pb/”flb = w π 1.

These equations are all we need in order to describe linear structure
formation in the LCDM model. Of course, we cannot use an infinite
set of coupled di�erential equations in practice, but luckily, the higher
moments usually contribute less and less, so we are able to obtain nice
results by truncating the Boltzmann hierarchies at some maximum mul-
tipole order, lmax.

Using lmax = 17 has been shown to work quite well for the neutrino
hierarchy and is the default in the popular Einstein–Boltzmann
solver code, class [27], with which we obtain the resulting evolution
of the density perturbations, ”, for the di�erent components at a
scale of k = 1.0 Mpc≠1, shown in figure 2.7. Here, we can see the
coupling between the photons and baryons prior to recombination,
and afterwards the baryons evolve similarly to cold dark matter
since the gravitational wells formed by the cold dark matter attract
the baryons. The neutrinos free stream from the moment they
decouple in the very early universe and the photons do as well after
recombination. As with the CMB power spectrum, we also here
notice the e�ects of the photon di�usion prior to recombination which
decreases the perturbations of photons and baryons until they decouple.

We have only focussed on structure formation to linear order in this
section and this is a very good tool to describe the universe on large
scales and it is especially useful to describe the physics of the early uni-
verse. As structure grows, though, perturbations collapse due to Jeans
instability and this leads to non-linear e�ects that we cannot describe
with the equations presented in this section. The distribution of matter
that we can observe is highly non-linear and we thus need a way to de-
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Figure 2.7: The evolution of the density perturbations of cold dark matter,
massless neutrinos, photons, and baryons. These have been computed using
class [27]. The vertical dashed lines signify the scale factors where the matter-
radiation and matter-L equalities, recombination, and reionisation happen.

scribe this. It is possible to do perturbation theory of higher orders, but
there is a limit to the results one might feasibly get this way. It is much
more common to rely on numerical simulations of interacting particles,
so-called N -body codes. These simulations are, however, much more
computationally demanding than the relatively simple computations of
linear perturbation theory, so obtaining a theoretical distribution of
matter from simulations can be challenging and slow. Although an in-
teresting topic, a further discussion of non-linear structure formation is
beyond the scope of this thesis.



3
DECAYING DARK MATTER

In an attempt to describe observations better than the LCDM model
is able to, one can make an extension to the model and test whether or
not data prefers the newly introduced extension. One such extension
is giving the cold dark matter the ability to decay into invisible dark
radiation. This model (and generalisations hereof) was initially the
foundation for my PhD project. My bachelor’s project was to explore
this model with the newest CMB data from the Planck collaboration’s
2018 data release, and once I started my PhD, this quickly turned into
the paper

• Andreas Nygaard, Thomas Tram, and Steen Hannestad. “Up-
dated constraints on decaying cold dark matter.” In: JCAP 05
(2021), p. 017. doi: 10.1088/1475- 7516/2021/05/017. arXiv:
2011.01632 [astro-ph.CO],

which constitutes the majority of this chapter. The remaining part of
the chapter discusses more elaborate models of decaying dark matter
and this consists of an excerpt from a review chapter that I co-authored
for a book on the Hubble tension,

• Andreas Nygaard, Emil Brinch Holm, Thomas Tram, and Steen
Hannestad. “Decaying Dark Matter and the Hubble Tension.” In:
The Hubble Constant Tension. Ed. by Eleonora Di Valentino
and Dillon Brout. Springer Series in Astrophysics and Cosmology.
Springer, July 2024. Chap. 25, pp. 481–492. isbn: 978-981-99-
0176-0, 978-981-99-0179-1, 978-981-99-0177-7. doi: 10.1007/978-
981-99-0177-7.

The introduction from this review chapter summarises the ideas behind
the decaying dark matter models wonderfully, and I will thus include it
here.
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Beginning of excerpt of reference [5]

Although the nature of dark matter remains unknown, a brief look at
the Standard Model contents of the universe reveals that a majority
of the known particles are unstable and decay. By analogy, a natu-
ral question to ask is whether dark matter may decay on cosmological
timescales. Decays of dark matter into electromagnetically interact-
ing particles are strongly constrained by CMB observations [31]. De-
cays into a dark sector, so-called invisible decays, on the other hand,
are much less constrained because no direct observation channel exists.
Nonetheless, there are strong constraints on models that assume all of
dark matter to decay on cosmological timescales (e.g., the simple obser-
vation that we observe it today) [32, 33]. However, these constraints
may always be evaded by considering a scenario where only a fraction
of the dark matter decays invisibly. It is this class of models we study
in this chapter.

There exist several phenomenological models of invisibly decaying
dark matter, largely varying in their assumptions on the decaying par-
ticle (cold or warm) and on the decay products (massive or massless,
two- or many-body decays). In this chapter, we review constraints on
the three most studied models:

DCDMæDR: Decaying cold dark matter (DCDM) decaying into
dark radiation (DR). Presented from section 3.1 to section 3.7.1.

DCDMæDR+WDM: Decaying cold dark matter decaying into
warm dark matter (WDM) and dark radiation. Presented in sec-
tion 3.7.2.

DWDMæDR: Decaying warm dark matter (DWDM) decaying into
dark radiation. Presented in section 3.7.3.

Why are these models relevant to the Hubble tension? Figure 3.1 shows
the relative change in the Hubble parameter H(a) as a function of the
scale factor a for the DWDMæDR and DCDMæDR models, as well
as a model with additional relativistic degrees of freedom, DNe� . The
abundances of the species have been fixed such that they all contribute
DNe� = 0.5 to the number of relativistic degrees of freedom at a = 1,
the acoustic scale is fixed (thus letting H0 vary) to simulate observa-
tional constraints, and the DWDM and DCDM models have the same
decay rate G.
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Figure 3.1: Hubble parameter H as a function of scale factor a, relative to its
value in the LCDM model, for models of decaying cold dark matter (DCDM),
decaying warm dark matter (DWDM), and additional relativistic degrees of
freedom, DNe� . Taken from Ref. [34].

In the top panel, G is such that both models decay before recombi-
nation. In this case, the energy density is greater than that of LCDM,
increasing the value of the Hubble parameter. As the species decay,
their values of H converge to that of the Ne� model. In all three mod-
els, the increase in H(a) prior to recombination decreases the sound
horizon at recombination, rs(aú). Since observations essentially fix the
acoustic scale to ◊s = rs(aú)/DA(aú), where DA(aú) is the angular di-
ameter distance to recombination, this results in a decrease of DA(aú),
which manifests in an increased value of H0, as can be seen in the fig-
ure1. The model of extra relativistic degrees of freedom obtains the
largest increase in H0 but is known to have too strong an impact on
the CMB spectrum to satisfactorily solve the Hubble tension [35]. The
motivation for the decaying models, then, is that they may be able to
circumvent these constraints by virtue of injecting the radiation energy
density more locally around recombination.

End of excerpt of reference [5]

The following paper on decaying cold dark matter includes an analysis
using the newest Planck CMB data in order to update the constraints on

1 However, in the bottom panel, where G is such that both models decay after recom-
bination, only a comparatively negligible increase in H0 is seen.
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the model parameters. It also includes an analytic treatment resulting
in a relation between very rapidly decaying cold dark matter and a
model with additional relativistic degrees of freedom. It furthermore
presents how well the model is able to alleviate the Hubble tension and
the more mild S8 tension.

Beginning of reference [1]

Updated constraints on decaying cold dark
matter

Andreas Nygaarda, Thomas Trama, Steen Hannestada

aDepartment of Physics and Astronomy, Aarhus University, DK-8000
Aarhus C, Denmark

Abstract. In this paper we update the constraints on the simple
decaying cold dark matter (DCDM) model with dark radiation (DR)
as decay product. We consider two di�erent regimes of the lifetime,
i.e. short-lived and long-lived, and use the most recent CMB data
from Planck (2018) to infer new constraints on the decay parameters
with which we compare the constraints inferred by the previous Planck
data (2015). We hereby show that the newest CMB data constrains
the fractional amount of DCDM twice as much as the previous data in
the long-lived regime, leading to our current best 2‡ upper bound of
fdcdm < 2.44%. In the short-lived regime, we get a slightly looser 2‡
upper bound of fdcdm < 13.1% compared to the previous CMB data. If
we include Baryonic Acoustic Oscillations data from BOSS DR-12, the
constraints in both the long-lived and the short-lived regimes relax to
fdcdm < 2.62% and fdcdm < 1.49%, respectively. We also investigate
how this model impacts the Hubble and ‡8 tensions, and we find that
each of the decay regimes can slightly relieve a di�erent one of the
tensions. The model can thus not accommodate both tensions at once,
and the improvements on each are not significant. We furthermore
improve on previous work by thoroughly analysing the impacts of short-
lived DCDM on the radiation density and deriving a mapping between
short-lived DCDM and a correction, DNe� , to the e�ective number of
massless neutrino species.
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3 . 1 INTRODUCTION

Ever since the first inference of the existence of dark matter almost a
century ago, the nature of it has remained elusive. Significant progress
has been made in establishing its properties. For example it is known
that dark matter can only interact weakly with standard model particles
(perhaps only through gravitation), and that it must be cold in the sense
of having su�ciently small thermal velocity so that small scale structure
can form. The standard LCDM model of cosmology is based on dark
matter with exactly these properties and in general provides an excellent
fit to observational data.

However, despite many advances in both theory and observations
much still remains unknown about the nature of dark matter. For
example dark matter could have significant interactions, either with
itself or with other particles in a dark sector, separate from the standard
model. Such models have been invoked as possible explanations of a
variety of anomalies in cosmology, such as the missing satellites problem,
the cusp-core problem, and the Hubble tension.

In this paper we investigate the possibility that dark matter is cold
and consists of massive particles, but that these particles are unstable
and decay. The decay product cannot simply be electromagnetic radia-
tion, since that would be detectable, so instead it is assumed that the
decaying cold dark matter (DCDM) decays into massless particles in a
dark sector. In line with previous work on the topic we shall refer to
the decay product as dark radiation (DR), so that we can sketch the
process as

Xdcdm ≠æ “dr .

When comparing a model where all dark matter is DCDM with our
observational data (Planck, etc.), we need a very large lifetime which
renders our DCDM basically stable. Because of that, we add another
degree of freedom to our model which is the initial fraction of DCDM
to the total amount of cold dark matter (CDM),

fdcdm =
Wini

dcdm
Wini

dcdm + Wscdm
, (3.1)

where SCDM is the stable CDM component. The physical interpreta-
tion of having this fractional decay could be [36]:
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1) CDM is multi-component such that only a part of the dark matter
decays,

2) all dark matter decays, but the decay product is both dark radia-
tion and a stable CDM component with fraction (1≠ fdcdm).

Since the amount of dark matter decreases, we define Wini
dcdm as the

density parameter of DCDM today as if none of it had decayed. We
otherwise adopt the same notation as in Ref. [30], which is now stan-
dard.

3 . 1 . 1 PREV IOUS WORK AND CONSTRAINTS

The field of decaying cold dark matter has been growing ever since the
first analysis by Ref. [37] in 2004, where the simple model with dark
matter decaying into dark radiation was also used. A lot has happened
in the last two decades with the field being much wider now with nu-
merous models of varying sophistication. The di�erent regimes of the
decay rate, Gdcdm, is investigated in Ref. [36] and the fractional amount
of DCDM is constrained to fdcdm < 3.8◊ 10≠2 using Cosmic Microwave
Background (CMB) data from Planck-2015. This is in agreement with
the results found in Ref. [38] where the same CMB data was used. In
this paper we update the results and constraints from Ref. [36] using
the newest Planck-2018 data as well as Baryonic Acoustic Oscillations
(BAO) data.

It is well known that allowing dark matter to decay can potentially
relieve the Hubble tension as proposed in Ref. [39], and this has been
demonstrated numerous times in the literature. This includes Ref. [40]
where both the Hubble tension and the milder S8 tension of matter
fluctuations between LCDM-model and the model-independent mea-
surements in the local universe were relieved using CMB data from
Planck-2018 and the same DCDM model as we are using in this paper.
Including other data sets such as BAO data and intermediate-redshift
data, however, leads to only a slight decrease in both tensions. Another
attempt at relieving the Hubble tension is made in Ref. [41] where the
tension is reduced by 1.5‡ using Planck-2015 data, BAO data, Redshift
Space Distortion (RSD) measurements and a DCDM model with decay
time after recombination. By allowing the CMB lensing power ampli-
tude to be a free fitting parameter, the tension is reduced by 3.3‡. They
furthermore found an upper limit on the fractional amount of DCDM
at the level fdcdm . 5% for DCDM decaying after recombination. The
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fractional amount of short-lived DCDM is also constrained in Ref. [42]
where CMB data from Planck-2015, BAO data, and RSD measurements
are used to infer the upper limit fdcdm . 2.73%, but this only leads to
a slight reduction of the Hubble tension. They furthermore show the
impacts of DCDM on the kinetic Sunyaev-Zel’dovich e�ect and note
that this could lead to further constraints on DCDM in the future.

Better and more data has allowed the constraints to be more refined,
with di�erent studies using di�erent combinations of data sets. An up-
per bound on the decay rate of late time DCDM at Gdcdm Æ (175 Gyr)≠1

is inferred in Ref. [43] by using CMB data and cluster counts from
Planck-2015 along with weak lensing data from KiDS450, while a more
tight constraint of Ge� < 9.1◊ 10≠9 Gyr≠1 is found in Ref. [44] to the
e�ective decay rate by using Planck-2015 data and analysing cosmic
reionisation and dark matter decay simultaneously. A di�erent ap-
proach is taken in Ref. [45] where they assume that the decay product
is detectable, i.e. a pair production of an elementary particle from the
Standard Model (quarks, leptons or bosons), which leads to lower limits
on the lifetime in the range · ≥ (1≠ 5)◊ 1028 s using data from the
isotropic gamma-ray background.

There are many studies beyond the simple DCDM model, where the
decay product is only DR, and a more agnostic approach is found in
Ref. [46] where the conversion of dark matter to dark radiation is treated
in a more general aspect without assuming the transition being caused
by a decay. They then find the impacts of the conversion on the CMB
spectrum as well as constraints on their general model parameters using
camb and CosmoMC, which lead to a reduction in the Hubble tension.
They then treat a conversion model in detail where dark matter particles
interact via a light mediator particle leading to Sommerfeld-enhanced
self-annihilation.

Another, more general analysis is done in Ref. [47] where they inves-
tigate Dynamical Dark Matter in which the dark sector is comprised of
a large ensemble of particles with di�erent decay widths. Their anal-
ysis shows that the constraints allow energy scales ranging from GeV
scale to the Planck scale, but the cosmological abundance of the dark
sector today must be spread across an increasing number of states in
the ensemble as the energy scale is decreased down to GeV scale from
the Planck scale. A third continuation of the DCDM model is found
in Ref. [48] which features Partially Acoustic Dark Matter, where a
subdominant part of the dark matter is strongly coupled to the DR
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fluid, and this combined fluid undergoes acoustic oscillations below the
e�ective dark sound horizon. This is used to reduce the tensions in
the Hubble constant and the lensing amplitude between CMB data and
direct measurements. They find that even though the model can be
used to reduce the tensions separately, it cannot accommodate both at
once, since additional CDM is required by the CMB data to preserve
the shape of the acoustic peaks.

It has recently been increasingly popular to assume a slightly warm
component of the decaying dark matter sector, and an analysis of the
background equations can be found in Ref. [49], where the cold dark
matter decays to both DR and a warm daughter particle. They show
that this is can potentially relieve the Hubble tension, which makes the
model very interesting to future work in the field of cosmology. More
thorough analyses of the two-body decay model are found in Refs. [50–
52], and the same model has also been shown to potentially relieve
the S8 tension in various studies, including Refs. [53–55]. This is due
to the recoil velocity of the massive daughter particle inducing a free-
streaming suppression of matter fluctuations. The model has also shown
promise when it comes to the problems of small-scale structure, and
treatments of this using N-body simulations can be found in Refs. [56–
59]. More general studies, where both daughter particles can have ar-
bitrary masses, are treated in Refs. [60, 61]. A slightly di�erent model,
where the decaying component is warm and the decay product is only
DR, is treated thoroughly in Ref. [62]. The idea of this model is to not
modify the evolution of the gravitational potentials, which otherwise
leads to inconsistencies with data as in the case of decaying cold dark
matter. They find that this can significantly reduce the Hubble tension
as well.

3 . 1 . 2 OUTL INE OF THIS PAPER

In this paper, we are updating the constraints on the DCDM model
parameters from Ref. [36] using the Markov Chain Monte Carlo
(MCMC) sampler MontePython [63] and the Einstein–Boltzmann
code class [27]. To describe the cosmological framework we will use
the following set of parameters:

Q = {Wbh
2, Wcdmh

2,h2,As,ns, ·reio} , (3.2)
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in addition to the decay parameter vector {fdcdm, Gdcdm}. As was also
done in Ref. [36], we will split our MCMC runs into two categories,
named short-lived and long-lived. The reason for this is that the like-
lihood contour in the full parameter space has a shape which makes
convergence exceedingly slow. When the lifetime becomes very short,
essentially all DCDM has decayed well before matter-radiation equality.
This makes it impossible to constrain Gdcdm, and the only constrain-
able quantities are then fdcdm and the product Gfdcdm. This leads to
a funnel-like likelihood surface stretching towards very large values of
Gdcdm. This particular part of the parameter space is best probed using
a logarithmic prior on Gdcdm, whereas for the long-lived regime, where
only a fraction of the dark matter has decayed before the present, a
prior which is flat in Gdcdm is more suitable. We will elaborate on the
technicalities of this split in section 3.4.

We will furthermore look at an analogous scheme to the short-lived
DCDM, i.e. a model with an increase in Ne� instead of a decaying dark
matter component. This is treated both analytically and numerically
using the class code.

The structure of this paper is as follows. We introduce the formal the-
oretical framework of DCDM in the synchronous gauge in section 3.2,
where both the background equations and the perturbation equations
are presented. In section 3.3 we will treat the mapping between a correc-
tion to Ne� and short-lived DCDM by deriving an analytical expression
for DNe� corresponding to a short-lived DCDM component and compar-
ing this to numerical results from class. In section 3.4 we will present
our results from the MCMC sampler MontePython along with im-
proved constraints in the long-lived and short-lived regimes, and in sec-
tion 3.5 we will investigate the impact of our model on the Hubble and
‡8 tensions. Lastly, we will conclude and summarise in section 3.6.

3 . 1 . 3 COSMOLOGICAL DATA

As our data sets we use the newest CMB data from Planck-2018 [21]
which has a higher quality in the polarisation data than its predecessor
from 2015 [64]. In all of our computations using Planck-2018, we use
both polarisation and temperature likelihoods for both high-¸ and low-¸
as well as the lensing likelihood. When comparing to Planck-2015 data,
we of course use the corresponding likelihoods from this data release,
which is the same combination used in Ref. [36].
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We furthermore use the BAO data from BOSS data release 12 (DR-
12) [65]. While the BAO data presumably has little impact in parameter
constraints in the short-lived regime, due to the decay happening much
earlier than the formation of the BAO, it is quite important in the limit
of very long-lived DCDM.

3 . 2 BOLTZMANN EQUATIONS FOR DCDM AND
DR

The behaviour of DCDM and DR can be calculated using the Boltzmann
equation, which takes the following form for DCDM [36]:

df
d· =

ˆf

ˆ·
+

ˆf

ˆxi

dxi
d· +

ˆf

ˆp

dp
d· +

ˆf

ˆp̂i

dp̂i
d· = ±aGdcdmfdcdm , (3.3)

with ≠ and + for DCDM and DR respectively.

3 . 2 . 1 BACKGROUND EQUATIONS

The zeroth moment of the Boltzmann equation, eq. (3.3), i.e. integrat-
ing it over phase-space and keeping only terms of zeroth order, leads
to the continuity equation, which is di�erent for DCDM and DR than
for the homogeneous universe in having source terms dependent of the
decay rate Gdcdm with respect to proper time [36]:

fl
Õ
dcdm = ≠3a

Õ

a
fldcdm ≠ aGdcdmfldcdm ,

fl
Õ
dr = ≠4a

Õ

a
fldr + aGdcdmfldcdm ,

(3.4)

where the prime denotes derivatives with respect to conformal time, · .

3 . 2 . 2 PERTURBATION EQUATIONS

One way of obtaining the relevant perturbation equations is again
through the Boltzmann equation, eq. (3.3). We are doing our calcu-
lations in the comoving synchronous gauge, so we need to express the
perturbation equations in this gauge. Perturbations in the synchronous
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gauge can be expressed in the following way using the space-time inter-
val [30]:

ds2 = a
2(· )

�
≠d·2 + [”ij + hij(x, · )] dxidxj

�
, (3.5)

where the scalar part of the perturbation hij(x, · ) can be expressed
through its Fourier transform

hij(x, · ) =

Z
d3
k eik·x

✓
h(k, · )k̂ik̂j + 6÷(k, · )


k̂ik̂j ≠

1
3”ij

�◆
, (3.6)

with h(k, · ) and ÷(k, · ) being the metric perturbations in the syn-
chronous gauge. Integrating the Boltzmann equation, eq. (3.3), over
phase-space and keeping the first order terms leads to an expression
for the evolution of the density perturbation, ”dcdm = fldcdm/fl̄dcdm≠ 1,
where the bar denotes the average value as in a homogeneous universe.
We can furthermore find the evolution of the divergence, ◊dcdm, of the
fluid velocity by taking the divergence of the first moment of eq. (3.3),
which is found by multiplying the equation by ≠æp /E (with ≠æp and E

being the 3-momentum and the energy of a particle, respectively) and
again integrating over phase-space. The resulting equations are

”
Õ
dcdm = ≠h

Õ

2 , (3.7)

◊
Õ
dcdm = ≠H◊dcdm = 0 . (3.8)

These two equations are enough to describe the evolution of DCDM
since it per definition is cold, which means that we have neglected all
second (or higher) order terms of the momentum in our calculations [25].
All higher moments would therefore be zero.

The equations turn out a bit more complicated for DR, since this
species is not cold and we therefore cannot neglect higher orders of
momentum. Following the same procedure as for DCDM in the syn-
chronous gauge, we get the following equations for the evolution of the
density perturbations and the velocity divergence:

”
Õ
dr = ≠2

3h
Õ + aGdcdm

fldcdm
fldr

(”dcdm ≠ ”dr) , (3.9)

◊
Õ
dr =

k
2

4 ”dr ≠ k
2
‡dr ≠ aGdcdm

fldcdm
fldr

◊dr . (3.10)
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These certainly do not look as simple as those for DCDM, and we notice
the parameter ‡dr in the bottom equation which is the next moment of
the Boltzmann equation - the shear stress. Generally the evolution of
a moment, l, will depend on the next moment, l+ 1, which leads to an
infinite Boltzmann hierarchy for the moments containing the same in-
formation as the momentum-dependent Boltzmann equation itself. We
still need to truncate the hierarchy at some large l-value to work with it
numerically. In the class code, the cut-o� l-value can be user-specified
and is lmax = 17 by default.

3 . 3 MAPP ING SHORT -L IVED DCDM TO Ne�

In the very short-lived regime, all DCDM has decayed well before
matter-radiation equality. In this regime the primary e�ect of DCDM
should be to enhance Ne� through the decay product, DR. We define
the correction, DNe� , as the ratio between the energy densities of the
additional radiation (which is DR) and a single massless neutrino. How-
ever, we need to evaluate this ratio after the DCDM has fully decayed,
where no more DR is produced and the energy density scales as a≠4

(like any type of radiation),

DNe� =
fldr
flN=1
‹

����
t∫td

, (3.11)

where fl
N=1
‹ = 7/8 (4/11)4/3

fl“ represents only a single massless neu-
trino [66], and td is the time of the decay.

We can estimate how DNe� should scale by assuming an instant decay,
so the energy density of DR just after the decay equals that of DCDM
just before the decay. We can thus evaluate the energy density of DCDM
at the time of decay instead of that of DR. We can then scale that to
the current time, introducing ad as the scale factor at the time of decay

DNe� ¥
fldcdm
flN=1
‹

����
t=td

≥ ad ·
fdcdm

1≠ fdcdm
· Wdm,0

WN=1
‹,0

. (3.12)

Of course this is a very simplistic calculation, but it shows that, as
ad æ 0 (and thus Gdcdm æ Œ) the e�ect of DCDM vanishes and the
model becomes identical to standard LCDM.
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3 . 3 . 1 ANALYTIC SOLUTION OF BOLTZMANN
EQUATIONS

We can derive an analytic approximation to the Boltzmann equations
fairly easily. First, we define

Y = a
3
fldcdm/fl‹,0 , X = a

4
fldr/fl‹,0 , (3.13)

i.e. X and Y are constant in the absence of decays. Here fl‹,0 is the en-
ergy density of all neutrinos today as described by the e�ective number
Ne� . The Boltzmann equations (3.4), can then be expressed in proper
time as

dY
dt = ≠GY (t) , dX

dt = aGY (t) , (3.14)

where we have dropped the subscript on the decay rate G. The Boltz-
mann equation for the decaying component then has the solution

Y (t) = Yie
≠Gt , (3.15)

Yi = a
3
i

(fldcdm)i
fl‹,0

=
Wini

dcdm
W‹,0

=
Wdm,0
W‹,0

· fdcdm
1≠ fdcdm

, (3.16)

where the subscript i represents some initial starting point before the
decay, and the last equal sign assumes that all DCDM has decayed
today, thus making Wdm,0 both the current density parameter of all
dark matter and that of only stable dark matter, since no decaying
component is left.

The Boltzmann equation for DR can now be solved using the solution
to that of DCDM. We switch coordinates to the scale factor divided by
the initial scale factor at the starting point, ã © a/ai, and assume
that the universe is radiation dominated throughout the decay so that
a Ã t

1/2. We furthermore define

– © Hi

G
=

✓
8fiG

3 flr,0 a
≠4
i

◆1/2
· 1

G
, (3.17)
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Wbh2 Wcdmh2
h

2
As ◊ 109

ns ·reio Ne�

0.022032 0.11933 0.67556 2.215 0.9619 0.0925 3.046

Table 3.1: Table of input parameters in class which are held constant
through all calculations in section 3.3.2. Ne� is, however, modified with DNe�
in figure 3.3.

where – ∫ 1. We then integrate the di�erential equation from the
starting point ã = 1 to find the solution for X (a similar result can be
found in Ref. [67])

X(ã) = Xi +

"r
fi

2 erf
✓

ãÔ
2–

◆
≠ ãe

≠ã2/(2–)
Ô
–

#

◊
✓

8fiG
3 flr,0

◆1/4 Wdm,0
W‹,0

· fdcdm
1≠ fdcdm

G≠1/2 ,

(3.18)

where Xi is the initial value of X(ã) proportional to the initial DR
component (here we have Xi = 0 since there is no pre-existing DR
component). In the asymptotic limit (ãæŒ) we find

X(ãæŒ) = Xi+

r
fi

2

✓
8fiGflr,0

3

◆1/4 Wdm,0
W‹,0

· fdcdm
1≠ fdcdm

G≠1/2 , (3.19)

and we finally note that DNe� = Ne�X(ã æ Œ) because of our defini-
tion of X. Here we notice the scaling relation DNe� Ã G≠1/2

fdcdm/(1≠
fdcdm). Inserting numbers in eq. (3.19), we arrive at an approximate
relation of the form

DNe� ≥ 5.74 Wdm,0 h
2 fdcdm

1≠ fdcdm
G≠1/2

6 , (3.20)

where G6 = G/(106 Gyr≠1).

3 . 3 . 2 NUMERICAL ANALYS I S US ING CLASS

Using the class code, we can get an exact numerical correction to Ne�
caused by short-lived DCDM. The values of input parameters which are
held constant in all of the calculations can be seen in table 3.1 (Ne� is
modified by DNe� in figure 3.3).
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Running class with a high Gdcdm (> 103 Gyr≠1) ensures that all
DCDM has decayed well before today, which means that the energy
density of the resulting DR scales like normal radiation. DR and neu-
trinos therefore scale similarly, which makes the ratio of their energy
densities constant after the decay. This ratio is used to define the cor-
rection DNe� cf. eq. (3.11). However, because we do not only have a
single neutrino, we need to divide the neutrino density with Ne� . The
numerical value of DNe� can in fact be evaluated at any time after the
decay as long as the energy density of DCDM is no longer of any signif-
icant size. We, however, evaluate at the current time in order to get a
density of DCDM as low as possible,

DN (numerical)
e� = Ne�

fldr
fl‹

����
t=t0

, (3.21)

where fl‹ is the total energy density of all massless neutrino species.
At first, we are interested in how well our analytical approach fits

the numerical results. Using eq. (3.21), we calculate DNe� for di�erent
decay rates, Gdcdm, and fractional amounts of DCDM, fdcdm, and plot
the results as functions hereof. This can be seen in the figures 3.2a and
3.2b respectively along with the analytical results and the ratio between
the two. The numerical and analytical results agree with increasing
precision for higher values of Gdcdm, which is also supported by their
ratios approaching unity. Here we also note that both results approach
zero for increasing decay rate, which supports that we should recover
the LCDM model for Gdcdm æ Œ as we argued in the beginning of
section 3.3. From figure 3.2b we, however, see that the analytical and
numerical results agree with decreasing precision for higher values of
fdcdm, which makes sense according to eq. (3.19) due to the divergence
at fdcdm = 1. It should of course behave this way because we cannot
have that short-lived DCDM comprises all of the dark matter, since that
would correspond to no dark matter at all after recombination, which
contradicts some assumptions made in the derivation in section 3.3.1.
Note that the value of DNe� also approaches zero for fdcdm æ 0 which
again leads to the LCDM model. We also note that the ratio between
the analytical and numerical results in figure 3.2b does not approach
unity exactly, but rather a slightly higher value, since the decay rate is
fixed at a finite value (Gdcdm = 107 Gyr≠1) and the ratio only approaches
unity for Gdcdm æŒ, according to figure 3.2a.
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Figure 3.2: DNe� as a function of di�erent parameters for both the numeri-
cal result calculated using eq. (3.21) and the analytical result calculated using
eq. (3.19). The lower panels show the ratio between the numerical and analyt-
ical DNe� as a function of the same parameters. The additional parameters
used for the simulations are found in table 3.1. (a) DNe� as a function of the
decay rate, Gdcdm, with the fractional amount of DCDM fixed to fdcdm = 0.3.
(b) DNe� as a function of the fractional amount of DCDM, fdcdm, with the
decay rate fixed to Gdcdm = 107[Gyr≠1].

We can now run class again without DCDM, but with the corre-
sponding DN (numerical)

e� from the DCDM computation instead. Accord-
ing to the theory, we would expect the cosmology of such a run to be
similar to that of very short-lived DCDM. Figure 3.3 shows the CMB TT

power spectra of the simulations with DCDM and DNe� = DN (numerical)
e�

for two values of the decay rate, Gdcdm œ {105 Gyr≠1, 108 Gyr≠1}, and
a fraction of initial DCDM to all dark matter of fdcdm = 0.2. From
this figure it is very clear that the mapping to DNe� becomes more
accurate for higher values of Gdcdm, as predicted by the theory. For the
lower value of Gdcdm = 105 Gyr≠1, we still see the same behaviour in
the power spectra, but they do not overlap as well due to the decay
happening much closer to recombination, so a more significant amount
of DR production is still ongoing at the time of the primary CMB sig-
nal formation. We also note that the magnitude of the relative power
spectra is decreasing for larger Gdcdm as we would also expect from the
theory.
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Figure 3.3: CMB TT power spectra for di�erent values of Gdcdm and the
corresponding DNnumerical

e� (calculated used eq. (3.21)) relative to the power
spectrum of the LCDM model with no correction to Ne� . The additional
parameters used for the simulations are found in table 3.1, and the fractional
amount of DCDM is fixed to fdcdm = 0.2.

3 . 4 CURRENT CONSTRAINTS ON DECAY
PARAMETERS

In order to obtain constraints on decay parameters we have used the
publicly available code MontePython [63]. This Markov Chain Monte
Carlo (MCMC) sampler uses the Metropolis-Hastings algorithm to sam-
ple the probability distribution assuming flat priors. The code is run
with four or seven sample chains on a computer cluster until conver-
gence of the chains. Our Gelman-Rubin criterion for convergence of the
chains is R ≠ 1 . 0.01, which means that the largest R ≠ 1 value of
any parameter should be around or smaller than 0.01. The prior of the
Gdcdm parameter is set with di�erent upper and lower bounds depending
on which regime we want to analyse. These bounds and the number of
sample chains will be stated when necessary.
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3 . 4 . 1 LONG-L IVED DCDM REGIME

The long-lived regime with a decay rate in the interval Gdcdm œ
[0, 103] Gyr≠1 corresponds to anything in between the DCDM starting
to decay around the time of recombination (and thus having fully de-
cayed by now) and an infinite lifetime where none of the DCDM has
decayed yet. The common thing here is that the decay has not finished
before recombination which leads to an ongoing DR production after
the emission of the CMB. The late decay will thus have an e�ect on e.g.
the angular diameter distance and other background parameters.

Using MontePython we search the parameter space with four sam-
ple chains using the likelihoods of Planck-2015 and Planck-2018 to see
the di�erences of the two data sets. The result of this is found in fig-
ure 3.4. We have also tried to further constrain the parameters using
a combination of Planck-2018 and Baryonic Acoustic Oscillation data
(BAO) from BOSS DR12. These results are plotted along with that of
only Planck-2018 in figure 3.5.

From figure 3.4 we see that the Planck-2018 data constrains the
amount of DCDM through the parameter fdcdm much more than the
Planck-2015 data does, and our results using Planck-2015 is in great
agreement with those found in Ref. [36]. The same is true regarding
the constraints on the decay rate, Gdcdm, which means that the Planck-
2018 data favours very long-lived DCDM even more than Planck-2015
data does. The plateau for higher values of Gdcdm is due to the fact that
the data cannot distinguish between the models corresponding to this
plateau given that they all imply a very late decay of DCDM (much
later than recombination). The plateau continues all the way to the
short-lived regime, but we only show the lowest values here. The dis-
agreement in the parameter Ê

ini
cdm © (Wini

dcdm + Wcdm)h2 is mainly due
to the disagreement in Wcdm of the two Planck data sets [21, 64], since
the very long-lived DCDM behaves like a stable component and we thus
would not expect a significant change to the total dark matter compo-
nent from that of the LCDM model.

In figure 3.5 we see that the addition of BAO data relaxes the amount
of DCDM through fdcdm a little, and we see a slight change in the pos-
terior of the decay rate as well, raising the plateau for higher values
while faintly narrowing the peak towards lower values. The parameter
Ê

ini
dcdm is lowered by BAO as well, and this is in agreement with a nar-

rower peak in the decay rate when including BAO, i.e. if the decay
rate is smaller, the lifetime is longer, and we therefore need a smaller
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Figure 3.4: Triangle plot of posteriors in the long-lived regime using the two
Planck data sets from 2015 and 2018.

amount of initial dark matter since less of it has time to decay before
the present.

The relevant best-fit parameters and constraints in the long-lived
regime can be seen in the middle panel of table 3.2 where we see a
much tighter constraint on fdcdm inferred by data from Planck-2018 as
opposed to data from Planck-2015, and the same is true for the param-
eter Gfdcdm. We also notice that the inclusion of BAO data loosens
the constraints of the parameters while slightly modifying the best-fit
values of H0 and Wini

cdm as well.
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Figure 3.5: Triangle plot of posteriors in the long-lived regime using Planck-
2018 data with and without BAO data from BOSS DR12.

very long-lived dcdm regime

In order to compare with the previous results of Ref. [36], we have also
investigated a very long-lived sub-regime with Gdcdm . H0. This yields
slightly di�erent results, since the long-lived runs are strongly undersam-
pled in the very long-lived limit, but the tendencies are the same with
tighter constraints from the newest Planck-2018 data. The inclusion
of BAO data actually further tightens the constraint of the parameter
Gfdcdm even though this was opposite in the long-lived regime.

We find that this regime allows for a much larger fractional amount
of DCDM (fdcdm æ 1), which is clear from figure 3.6, since the lifetime
is larger than the age of the universe and the fractional amount thus
has only little impact on current observables and no impact on early-
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Figure 3.6: 1D posteriors of DCDM parameters in the very long-lived sub-
regime using Planck-2015 data along with Planck-2018 data with and without
BAO data.

time observables such as the CMB. Constraints from this regime can
be found in the upper panel of table 3.2. We notice that we are only
able to constrain the parameter fdcdm when including the BAO data,
and even then it is only possible to 1‡. This is due to the degenerate
nature of the parameter in this regime, where all values are allowed by
the data. The degeneracy is lifted when including BAO data since late-
time measurements can rule out too high values of fdcdm, given that
these would feel the e�ects of the decay as opposed to the early-time
measurements. This is also apparent from figure 3.6.

3 . 4 . 2 SHORT -L IVED DCDM REGIME

In the short-lived regime, the decay rate is rather high (Gdcdm >

103 [Gyr≠1]) resulting in most of the DCDM decaying well before re-
combination. We now search the parameter space using seven sample
chains, and in order to search more e�ciently, we implement the loga-
rithm of the decay rate, log10(Gdcdm), as a parameter in class, which
allows us to use this parameter in MontePython as well. The pa-
rameter space is e�ectively reduced in size which makes the sampling
much faster. We cut the prior at the upper bound Gdcdm < 106 [Gyr≠1]
(similar to Ref. [36]) for convergence reasons, but we have checked that
the posterior for the decay rate flattens out for increasing values, thus
creating another plateau where the data cannot distinguish between the
models. To further increase the e�ciency we use the flag -T=2.0 (de-
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Figure 3.7: Triangle plot of posteriors in the short-lived regime using the two
Planck data sets from 2015 and 2018.

fault 1.0) when running the code, which corresponds to increasing the
statistical temperature of the chains so they are more likely to jump
further in the parameter space.

The figures 3.7 and 3.8 show the posterior distributions in the short-
lived regime of Planck-2018 data and either Planck-2015 data or in-
cluding BAO data, respectively. The 1D-posteriors of the parameter
log10(Gdcdm[Gyr≠1]) are not shown in their entirety, but rather a closeup
of the interesting region is presented by only showing the vertical inter-
val [0, 0.2] (the posteriors are normalised so highest value equals unity).

Figure 3.7 shows that Planck-2018 data allows for a slightly higher ini-
tial dark matter density, Êini

cdm, than Planck-2015 data does, which is ap-
parent from the broader peak and longer exponential tail towards higher
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Figure 3.8: Triangle plot of posteriors in the short-lived regime using Planck-
2018 data with and without BAO data from BOSS DR12.

values in the 1D-posterior. The amount of DCDM allowed by Planck-
2018 is also slightly higher which is apparent from the 1D-posterior
of fdcdm being slightly broader than that of Planck-2015. The pos-
terior of the decay rate consists of two sub-regimes as explained in
Ref. [36], where the small peak (plateau) in the 1D-posterior of Planck-
2015 (2018) represents a decay happening mostly in between matter-
radiation equality and recombination while the increase in the posterior
at larger values of the decay rate represents a decay taking place mostly
before matter-radiation equality. Our 1D-posterior of the decay rate for
the Planck-2015 data is reminiscent of the one presented in Ref. [36], but
with a much less significant peak even though the same data has been
used. The di�erence here could possibly be due to the Gelman-Rubin
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VLL Wini
cdmh

2 ◊ 102
H0 fdcdm ◊ 102 Gfdcdm ◊ 103

[km s≠1Mpc≠1] [Gyr≠1]

P15 11.9+0.3
≠0.3 67.7+1.3

≠1.2 — < 7.12

P18 11.9+0.2
≠0.2 67.5+1.2

≠1.2 — < 4.01

+ BAO 11.9+0.2
≠0.2 67.6+0.9

≠0.9 < 8.05ú < 3.72

LL Wini
cdmh

2 ◊ 102
H0 fdcdm ◊ 102 Gfdcdm ◊ 102

[km s≠1Mpc≠1] [Gyr≠1]

P15 12.0+0.3
≠0.3 67.3+1.6

≠1.5 < 4.14 < 10.99

P18 12.1+0.3
≠0.3 67.1+1.2

≠1.2 < 2.44 < 5.18

+ BAO 11.9+0.2
≠0.2 67.7+1.0

≠0.9 < 2.62 < 5.84

SL Wini
cdmh

2 ◊ 102
H0 fdcdm ◊ 101 Gfdcdm ◊ 10≠4

[km s≠1Mpc≠1] [Gyr≠1]

P15 12.6+1.5
≠0.5 67.7+1.6

≠1.6 < 0.98 < 2.35

P18 12.7+1.6
≠0.8 67.8+1.4

≠1.5 < 1.31 < 3.01

+ BAO 13.1+1.8
≠1.0 68.6+1.2

≠1.4 < 1.49 < 3.78

Table 3.2: Table of parameter constraints in the long-lived (LL) and short-
lived (SL) regimes as well as in the very long-lived (VLL) sub-regime. We
present 2‡ constraints corresponding to a 95% confidence level. The ú refers
to 1‡ constraints only. Results are shown using data from Planck-2015 (P15),
data from Planck-2018 (P18), and a combination of data from Planck-2018
and BAO.

convergence criterion of the MCMC sampling, where our criterion is an
order of magnitude lower than the one used in Ref. [36]. The conclu-
sion, however, does not change by letting the chains converge further,
but we do get that the region between the small peak and the subse-
quent increase is populated more frequently with a stronger convergence
criterion, thus diminishing the profoundness of the peak and making it
more like a plateau. Using Planck-2018 data we completely transform
the peak into a plateau instead.

From figure 3.8 it is clear that the inclusion of BAO data does not
have a significant impact in the short-lived regime, as we previously
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argued. We see almost the exact same features in the posteriors with
the exception that the 1D-posteriors of the initial dark matter density
and the fractional amount of DCDM seem broader when including BAO
data as opposed to just using Planck-2018 data. This is, however, not
significant and we should not draw any conclusions of it, since it could
very well be due to our chains not being converged enough. Increasing
the amount of sample points or chains could possibly make the di�erence
between the posteriors vanish.

The lower panel of table 3.2 shows the relevant best-fit values and
constraints in the short-lived regime. Here we see more loose constraints
of the DCDM parameters from Planck-2018 data than from Planck-
2015 data, and even more so when including BAO data. The DCDM
parameter constraints are, however, not a�ected as much in the short-
lived regime as in the very long-lived limit, where the inclusion of BAO
data lifts the degeneracy of the fdcdm parameter, and this agrees with
the idea that BAO data only has little impact in short-lived regime.

We note that at first it might seem somewhat counter-intuitive that
the constraint on fdcdm is actually loosened by the inclusion of more
data, rather than strengthened. The reason for this shift is, however,
easy to understand from figure 3.8. Given the strong correlation be-
tween fdcdm and Gdcdm, the shift towards higher values of Gdcdm en-
forced by the Planck-2018 (and BAO) data removes a large fraction of
the low fdcdm parameter space allowed by the Planck-2015 data. This
automatically shifts the preferred range of fdcdm upwards and leads to
a less restrictive upper bound on this parameter.

3 . 5 IMPACT ON THE HUBBLE AND ‡8 TENS IONS

As mentioned in section 3.1.1, the idea of decaying dark matter has been
able to relieve both the Hubble tension and the ‡8 tension in matter
fluctuations to some extent.

From the 1D-posteriors of figure 3.9 we can clearly see that our model
is indeed capable of relieving the Hubble tension to some extent using
the various data sets. The best result in this regard is obtained using
both Planck-2018 data and BAO data. This seems to be the case in both
regimes while the short-lived regime is more successful in relieving the
tension, which is also apparent from table 3.2. Compared to standard
LCDM, our best case scenario is, however, only able to relieve the ten-
sion with ≥1‡, so the simple DCDM model does not o�er the solution to
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Figure 3.9: 1D-posteriors of H0 using all the data set combinations in both
regimes. A posterior for the LCDM model using the newest Planck-2018 data
has been included for reference. The shaded areas represent the latest confi-
dence level of measurements in the local universe of 73.2± 1.3 km s≠1 Mpc≠1

from Ref. [68].

this discrepancy. Perhaps one might have expected that the short-lived
case would o�er a better fit with high values of H0. It is well known
that using only CMB temperature data, there is a very strong positive
correlation between Ne� and H0, and since the short-lived case can be
almost exactly mapped to a model with increased Ne� (see section 3.3),
it is perhaps natural to expect that a high H0 can be accommodated.
However, the high (H0,Ne�) region is no longer allowed when polarisa-
tion data is added, thus disallowing this possibility, and in the end the
preferred range of H0 is only shifted marginally towards higher values
in this case.

The ‡8 tension is also not solved with this model, which is apparent
from the contours of figure 3.10. This figure includes the contours of
the combined DES Year 1 data from local measurements of the matter
fluctuations using galaxy clustering and lensing. We can see that the
contours of the long-lived regime move towards that of DES, but the
tension is only relieved slightly with the 2‡ contours of the long-lived
results being within the 1‡ contour of DES and vice versa. In the short-
lived regime, all contours remain outside the 1‡ contour of DES, as in
the case of standard LCDM, and they only move tangentially along the
DES contour in comparison to the LCDM contour, thus yielding no
better (nor worse) result.
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Figure 3.10: 2D-posteriors of WM and ‡8 using all the data set combina-
tions in both regimes. A posterior from the LCDM model using the newest
Planck-2018 data has been included for reference (dotted contours) as well as
a posterior from DES Year 1 (purple contour) combining galaxy-galaxy clus-
tering, galaxy-galaxy lensing and cosmic shear (Ref. [69]).

Since the ‡8 tension can be relieved (slightly) only in the long-lived
regime and since the Hubble tension can be relieved best in the short-
lived, we recover a problem stated in Ref. [40] saying that attempts to
relieve one of the tensions often worsens the other. We, however, do
not get a worse result for the other when attempting to relieve one of
the tension, but since the two tensions are relieved in di�erent decay
regimes, the simple DCDM model cannot be a solution to both tensions
at once.

3 . 6 CONCLUS ION

Using the MCMC sampler MontePython and the most recent CMB
data from Planck-2018, we have improved on the previous constraints on
the fractional amount of DCDM, fdcdm, as well as the parameter Gfdcdm
in the two regimes (long-lived and short-lived) along with the very long-
lived sub-regime. In the very long-lived sub-regime, we find that the
fractional amount of DCDM cannot be constrained by Planck-2018 data
alone due to the degenerate nature of the parameter in this regime. We
can however get a constraint for Gfdcdm for which we find an upper
bound at 2‡ of Gfdcdm < 4.01◊ 10≠3 Gyr≠1. In the long-lived regime,
we find that the fractional amount of DCDM is much better constrained
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by Planck-2018 data (as opposed to Planck-2015 data) leading to an
upper bound at 2‡ of fdcdm < 2.44%, and the same is true for Gfdcdm
for which we find an upper bound at 2‡ of Gfdcdm < 5.18◊ 10≠2 Gyr≠1.
The constraints in the long-lived and very long-lived regimes are thus
all tighter than the constraints inferred by Planck-2015 data by a factor
of ≥2. For the short-lived regime, the Planck-2018 data leads to more
loose constraints than Planck-2015 data does, and we thus find 2‡ upper
bounds of fdcdm < 13.1% and Gfdcdm < 3.01◊ 104 Gyr≠1, which are
both higher than those of Planck-2015 by a factor of ≥1.3.

To further constrain the decay parameters, we have included BAO
data from BOSS DR-12 as well. This leads to an even tighter constraint
in the very long-lived sub-regime for Gfdcdm with a 2‡ upper bound of
Gfdcdm < 3.72◊ 10≠3 Gyr≠1, while it is now also possible to constrain
fdcdm due to the BAO data lifting the degeneracy. We then get a
1‡ upper bound of fdcdm < 8.05%. In both the long-lived and the
short-lived regimes we, however, get looser constraints. In the long-
lived regime we get 2‡ upper bounds of fdcdm < 2.62% and Gfdcdm <

5.84◊ 10≠2 Gyr≠1, while we in the short-lived regime get fdcdm < 14.9%
and Gfdcdm < 3.78◊ 104 Gyr≠1.

The impact on the Hubble and ‡8 tensions has also been investigated
by comparing our posterior distributions from the MCMC runs with the
data from measurements in the local universe, i.e. the latest value of the
Hubble parameter inferred by the distance ladder in Ref. [68] and the
combined data of DES Y1 (Ref. [69]) measuring the matter fluctuations
using galaxy clustering and lensing. We get a smaller discrepancy in
the Hubble parameter in the short-lived regime, reducing the tension
by ≥ 1‡, but in this same regime we get no improvement of the ‡8
tension. The case is opposite for the long-lived regime, where we are
able to relieve the ‡8 tension slightly, but not as much in the Hubble
tension. We must therefore conclude that the simple DCDM model
cannot accommodate both tensions at once.

We have in addition to this investigated how the short-lived DCDM
(decaying much earlier than matter-radiation equality) is analogous to
a universe without DCDM but with a larger initial amount of non-EM
radiation (e.g. massless neutrinos). This has been analytically mapped
to a correction to the e�ective number of massless neutrinos species,
Ne� , in eq. (3.19). Using the Boltzmann code class we also calculated
the actual correction to Ne� and saw that this scales in the exact same
way as our analytical expression. The analytical and numerical results
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are also shown to agree with increasing precision as Gdcdm æŒ, where
we recover the standard LCDM model.

Reproducibility. The modified version of class used to ob-
tain the results in this paper is available at https://github.com/
AarhusCosmology/CLASSpp_public/ as branch 2011.01632 with
SHA 767fcdec52f8135dd8cebfcba7e1b2b3cdc7bc6a. The version of
MontePython used as well as parameter files and scripts are avail-
able at https://github.com/AarhusCosmology/montepython_
public/ as branch 2011.01632 with SHA e2a8af41725ce31d
63718eafe7ec614801b291f6.
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Ending of reference [1]

3 . 7 OTHER DECAYING DARK MATTER MODELS

As mentioned in the introduction to the chapter, I have co-authored
a review chapter on decaying dark matter models for a book on the
Hubble tension. This review was in part a review of the paper I have
just presented, but I find it relevant to include the parts from the review
that was based on other work.

Beginning of excerpt of reference [5]

3 . 7 . 1 DCDMæDR WITH PROF ILE L IKEL IHOODS

The DCDM model has been investigated in numerous papers with
Bayesian statistics [36–42, 44] and recently also with frequentist statis-

https://github.com/AarhusCosmology/CLASSpp_public/
https://github.com/AarhusCosmology/CLASSpp_public/
https://github.com/AarhusCosmology/montepython_public/
https://github.com/AarhusCosmology/montepython_public/
http://phys.au.dk/forskning/cscaa/
http://phys.au.dk/forskning/cscaa/
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Figure 3.11: Triangle plot of posteriors in the short-lived regime using Planck
2018 data with and BAO peak data. The figure shows the model-specific
parameters, Êini

dcdm and Gdcdm, along with H0, and has been produced using
the same MCMC runs used in Ref. [1].

tics and profile likelihoods [7]. Figure 3.11 shows the posteriors for the
short-lived regime in the model-specific parameters (along with H0) us-
ing high-¸ and low-¸ temperature and polarization as well as lensing
data from Planck 2018 [21] (from now on just referred to as Planck
2018 data) with and without the BOSS DR12 BAO peak data [70]
(from now on referred to as BAO peak data). The posterior of the de-
cay rate, Gdcdm, shows a volume e�ect towards higher values, where a
large part of the parameter space fits the data well. Because of this, it
is not possible to assign a reasonable credible interval to the decay rate
since any such interval would be prior dependent. It is, however, also
apparent that a region around log10(G/Gyr) œ [4.5, 5.5] includes a sep-
arate e�ect in the posterior, visualized as a small “bump” or plateau,
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which marks this as a region of interest. By investigating the same
region in the decay rate with profile likelihoods, we find that a peak
in the likelihood (a “well” in ‰

2(G) © ≠2 log(L(G)/ max(L(G))) arises
here, as shown in figure 3.12. This study has been performed with the
same data (Planck 2018 data and BAO peak data) along with low red-
shift BAO data from the 6dF survey [71] and the BOSS main galaxy
sample [72] (the inclusion of which will be referred to as the full BOSS
DR12 data set). The approximate 68% confidence interval obtained
is log10 G Gyr≠1 = 4.763+0.214

≠0.290, while it is unconstrained at 95%. The
global best-fit of the model lies in this region at D‰2 = 2.8 relative to the
LCDM model, hinting at a mild preference for the DCDM model over
LCDM. Interestingly, the best-fitting parameters log10 G Gyr≠1 = 4.763
and Ê

ini
dcdm = 0.00429 correspond to a scenario where about 3% of the

cold dark matter decays just prior to recombination, in support of the
tendency of early time solutions to the Hubble tension to preferentially
modify physics temporally close to recombination [35, 73]. Despite the
stronger signature of DCDM in the frequentist analysis, the resulting
68% constraint H0 = 68.14+0.54

≠0.49 km s≠1 Mpc≠1 solidifies the conclusion
that the DCDMæDR model is unable to solve the H0 tension.

3 . 7 . 2 DCDMæDR+WDM

A reasonable increase in model complexity is to allow one of the daugh-
ter particles to be massive. We still have a cold mother particle decaying
into dark radiation, but now also accompanied by a massive daughter
particle acting as warm dark matter (WDM). We can write this process
as

Xdcdm æ “dr + Ywdm .

This model has the same model parameters as the DCDMæDR model
(abundance and decay rate), but it also has a new parameter: The
mass ratio of the WDM particle to the DCDM particle, em. Using
conservation of energy and momentum, one can relate this mass ratio to
the WDM velocity and the fraction of energy transferred to the massless
DR particle in the decay, ‘, through the following two equations [50],

‘ =
1
2 (1≠ em2) , —

2
wdm =

‘
2

(1≠ ‘)2 , (3.22)
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Figure 3.12: Top panel: One-dimensional profile likelihood of log10 G/Gyr.
Bottom panel: The abundance of decaying cold dark matter Êini

dcdm associated
with every point in the profile above. Dashed lines indicate the D‰2 = 1
intersections, giving the 1‡ CIs. Taken from Ref. [7].

where —wdm is the velocity of the massive daughter in natural units.
The background and perturbation equations are the same for DCDM

and DR as in the DCDMæDR model, except for an additional factor of
‘ on the source term in the background equation for DR. The equations
for the massive daughter can be expressed in terms of the equation-of-
state parameter, wwdm(a), which can be shown to have the following
form [50],

wwdm(a) =
1
3

G—2

1≠ e≠Gt

Z
a(t)

aini

e≠GtD dln(aD)
HD[(a/aD)2(1≠ —2) + —2]

, (3.23)

where aini refers to some initial value of a where our numerical inte-
gration begins, and the subscript “D” refers to the integration variable.
The background equation for the massive daughter particle is then

fl̇wdm = ≠3
�
1 +wwdm(a)

�aÕ

a
flwdm + (1≠ ‘)aGfl0 . (3.24)
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Parameter BAO+SNIa +Planck
100 �b – 2.243(2.244)+0.014

�0.013

�ini
dcdm 0.2529(0.2532)+0.0098

�0.01 0.2606(0.2619)+0.0051
�0.0054

H0/[km/s/Mpc] 68.48(68.44)+0.88
�0.91 67.71(67.71)+0.42

�0.43

ln(1010As) – 3.051(3.052)+0.014
�0.015

ns – 0.9674(0.9672)+0.0038
�0.0038

�reio – 0.0576(0.0582)+0.0069
�0.0079

log10(�/[Gyr�1]) unconstrained(0.09) unconstrained(�3.86)
log10(�) unconstrained(-2.89) �2.69(�2.97)+0.32

�1.3

�m 0.299(0.2992)+0.013
�0.011 0.3102(0.3109)+0.0056

�0.0058

S8 – 0.821(0.828)+0.017
�0.011

�2
min 1036.6 2053.4

TABLE I. The mean (best-fit) ±1� errors of the cosmological
parameters from our �DDM analyses against BAO + SNIa
and BAO + SNIa + Planck. For each data-set, we also report
the best-fit �2.

C. Implications for cosmological tensions and
Xenon1T

1. The H0 tension

In order to test the implications of the 2-body decay
for cosmological tensions, we conduct a run that include
the local measurement of H0 from SH0ES [10], CMB,
BAO and SNIa data. For the sake of brevity we do
not report the results of the runs here. We find that
the shape of the posterior probabilities is almost un-
changed, except for a tiny shift in H0 to a higher value,
H0 = 68.21 ± 0.4 km/s/Mpc. We thus confirm the in-
ability of this model to resolve the Hubble tension. This
was expected since it had already been shown through
a model independent reconstruction of the late-time dy-
namics of the dark sector that any late-time solution that
does not modify the sound horizon at recombination is
expected to fail when combining BAO with SNIa data

12

�3 �2 �1 0
Log10(�/Gyrs�1)

�3 �2 �1
Log10(")

66 68 70 72
H0

FIG. 6. 1 and 2D marginalized posterior distributions for the cosmological parameters relevant for our analysis. Hereafter,
unless otherwise stated, the green shaded bands refer to the joint S8 measurement from KiDS-1000+BOSS+2dFLens, while
the gray bands stand for the H0 measurement by the SH0ES collaboration. Note that the BAO+SNIa analysis is based on
background evolution only, whereas the BAO+SNIa+CMB analysis also includes linear perturbations (see the main text for
further details).
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C. Implications for cosmological tensions and
Xenon1T

1. The H0 tension

In order to test the implications of the 2-body decay
for cosmological tensions, we conduct a run that include
the local measurement of H0 from SH0ES [10], CMB,
BAO and SNIa data. For the sake of brevity we do
not report the results of the runs here. We find that
the shape of the posterior probabilities is almost un-
changed, except for a tiny shift in H0 to a higher value,
H0 = 68.21 ± 0.4 km/s/Mpc. We thus confirm the in-
ability of this model to resolve the Hubble tension. This
was expected since it had already been shown through
a model independent reconstruction of the late-time dy-
namics of the dark sector that any late-time solution that
does not modify the sound horizon at recombination is
expected to fail when combining BAO with SNIa data

Figure 3.13: Triangle plot of the decay rate, the energy transfer ratio, and
the Hubble constant. The red lines and contours are from a background-only
MCMC run with the full BOSS DR12 data set and a SH0ES prior, while the
blue lines and contours are from an MCMC run including perturbations (with
the fluid approximation) and also the Planck 2018 data in addition to the
other data sets. The gray contours are the H0 measurement by the SH0ES
collaboration. The figure is taken from Ref. [74].

The perturbation equations resemble those of massive neutrinos but can
be rewritten in terms of wwdm in a similar manner [74]. An accurate
implementation of the full Boltzmann hierarchy fast enough for MCMC
runs to be feasible is still missing, but results have been produced using
a fluid approximation [33, 35, 74–76].

Figure 3.13 shows the posteriors for the model-specific parameters,
G and ‘, along with H0. These results assume that all dark matter is
decaying, i.e., the abundance ratio, fdcdm, is fixed to unity. Because of
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this, the results are within the very long-lived regime, and the energy
transfer ratio, ‘, is rather low as well, resulting in a heavy WDM daugh-
ter particle acting much like CDM. In particular, if log10(‘) . ≠2.7,
the decay rate becomes unconstrained because the massive daughter
particle becomes virtually indistinguishable from the cold mother par-
ticle. The 68.27% credible interval for the Hubble constant from this
analysis is H0 = 67.71+0.42

≠0.43 km s≠1 Mpc≠1, which is similar to the re-
sult from the long-lived regime in the simple DCDMæDR model. We
would expect that an analysis with a fractional decay in the short-lived
regime would yield a higher value of H0. In order to do this accurately,
the full hierarchy should be solved for WDM instead of using a fluid
approximation.

3 . 7 . 3 DWDMæDR

Another extension of the simplest decaying dark matter model in sec-
tion 3.7.1 is to allow the decaying particle a non-negligible momentum,
making it a warm dark matter species. The model of a decaying warm
dark matter (DWDM) species decaying to dark radiation was studied
in Refs. [34, 62]. This model has several interesting particle physics
realizations, such as decaying neutrinos [77] and majoron decays [78].
In particular, in [79] it was used to constrain the lifetime of the active
neutrino species.

The fundamental characteristic that separates the DWDM model
from the other decaying dark matter models is that the non-negligible
momentum increases the lifetime by a factor of E/m through time di-
lation, where E and m denote the energy and mass of the decaying
particle, respectively. In the general case, the model contains three pa-
rameters: The decay constant G (or, equivalently, the lifetime · © 1/G),
the DWDM mass m and the abundance of the DWDM species, specified
either at final or initial time. The background equations are [34]

fl
Õ
dwdm = ≠3a

Õ

a
(fldwdm + pdwdm)≠ aGmndwdm,

fl
Õ
dr = ≠4a

Õ

a
fldr + aGdcdmmndwdm,

(3.25)

where fli and pi denote the energy and pressure density of the i’th species
and ndwdm the number density of the decaying species. Apart from the
addition of the non-zero DWDM pressure pdwdm, these equations are
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Figure 3.14: Two-dimensional marginalized posteriors for the Hubble con-
stant H0 and the three parameters of the DWDMæDR model: The initial
abundance, Ne�,ini,dwdm, parametrized as its contribution to the e�ective num-
ber of relativistic degrees of freedom, the DWDM lifetime, · , and the DWDM
mass, m. Taken from Ref. [34].

identical to the case of a cold decaying species (3.4) up to the substi-
tution fl æ mn, i.e., it is the rest mass and not the total energy that
drives the decay.

As in the DCDMæDR model, the perturbations of the DWDM
species are identical to those of massive neutrinos [30]. Moreover, the
decay product perturbations are influenced by a collision term, which
captures the fact that the DWDM species decays preferentially at low
momenta [34].

Figure 3.14, adopted from [34], shows contours of the two-dimensional
marginalized posterior distributions for H0 and three parameters of the
DWDMæDR model using Planck 2018 data combined with the full
BOSS DR12 data set. Here, the initial abundance is parametrized as
Ne�,ini,dwdm, its contribution to the e�ective number of relativistic de-
grees of freedom. The prior on the lifetime studied here is roughly
equivalent to the short-lived regime explored earlier.

Evidently, although the maximum a posteriori estimate favors the
LCDM limit, a considerable amount of the DWDM species is permitted
by the data. Ref. [34] finds a 68% credible upper bound ofNe�,ini,dwdm <

1.05. Furthermore, as seen in figure 3.14, there is a mild correlation be-
tween H0 and the DWDM abundance, indicating that the DWDMæDR
model may admit a larger value of H0 than LCDM. A 68% credible in-
terval of H0 = 68.73+0.81

≠1.3 km s≠1 Mpc≠1, at a 2.7‡ Gaussian tension
with the representative local value H0 = 73.2± 1.3 km s≠1 Mpc≠1 [68],
is presented in this study. Thus, the broad conclusion is that there is
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no evidence from CMB data that the DWDMæDR model solves the
Hubble tension.

Although the constraints on the lifetime · and mass m are strongly
driven by the bounds of the uniform prior chosen, in broad terms, the
data prefers small masses and small lifetimes. Unfortunately, in all
treatments of the DWDMæDR model to date, the e�ects of inverse
decays have been neglected. The inverse decay process is kinematically
allowed when the DWDM species decays while still relativistic, which
is exactly the scenario in the preferred region of parameter space [34].
Thus, a complete understanding of the DWDMæDR model inevitably
requires a numerical implementation of the inverse decay processes and
their quantum statistical corrections [77]. Finally, we also note that
the Bayesian constraints on the DWDMæDR model are expected to be
strongly influenced by prior volume e�ects [34] since it reduces to the
LCDM model in the limit of vanishing abundance, making the lifetime
and mass unconstrained and thereby storing a large probability mass
in the posterior distribution. At this time, a frequentist analysis of the
model has not been conducted.

3 . 7 . 4 D I SCUSS ION AND CONCLUS ION

The three decay models presented in this chapter all show an ability
to slightly alleviate the Hubble tension. The simplest of the models
(DCDMæDR), has been exhaustively studied, and it appears that it
has reached its limits regarding how much it can alleviate the tension.
The other two models, however, still have potential for further investi-
gation. The DCDMæDR+WDM model still needs a fast and accurate
implementation of the full Boltzmann hierarchy, and with a fractional
decay, this model can also be studied in the short-lived regime. The
DWDMæDR model also prefers slightly larger values of H0, but a study
including the inverse decay process is needed for a definite conclusion.
Further investigation of the latter two models, along with improvements,
could potentially alleviate the Hubble tension further. Ultimately, at
the time of writing, we cannot definitively say which decaying dark
matter model has the strongest alleviation of the Hubble tension, al-
though there is a slight preference for the DWDMæDR model with the
68% C.I. H0 = 68.73+0.81

≠1.3 km s≠1 Mpc≠1 at a 2.7‡ Gaussian tension
with the representative local value H0 = 73.2± 1.3 km s≠1 Mpc≠1 [68].
Thus, although decaying dark matter models are somewhat more nat-
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ural than several other proposed solutions to the H0 discrepancy, they
only accomplish a mild alleviation of the latter [35].

The next natural step to take in the hierarchy of numerical complex-
ity would be a fully general two-body decay from a mother particle
with a definite mass to two daughter particles with di�erent masses,
i.e., DWDMæWDM(1)+WDM(2). This is a challenging task since it
combines all the most di�cult aspects of the previous models while
also introducing new ones. Although the full set of perturbation equa-
tions has been derived [77], an implementation in a numerical Einstein–
Boltzmann solver code still remains. Furthermore, we expect the full
model to be very computationally expensive to evaluate, possibly mak-
ing it unfeasible for immediate inference purposes. Nevertheless, a fully
general decay scheme like this would, apart from other use cases like
neutrino decays, possibly be able to a�ect the physics around recombi-
nation in just the right way for the Hubble tension to be relieved.
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4
MACHINE LEARNING

Machine Learning (ML) has quickly grown from a specialised area of
computer science into a key driver of modern technology, influencing
both scientific advancements and everyday life. Its ability to identify
patterns, make predictions, and improve decision-making has made it
a vital tool in industries such as healthcare, finance, and personalised
services. From diagnosing diseases to personal recommendations, ML’s
impact is widespread and continues to grow.

The work I have done during my PhD has mainly been focussed on
machine learning and how to utilise it to make cosmological analyses
much faster and results more easily obtainable. In this regard, I have
had the pleasure of exploring many aspects of machine learning as well
as the challenges and frustrations that come with trying to make it
work.

This chapter will introduce key concepts and techniques in ML, fo-
cusing on di�erent learning approaches including supervised and active
learning. The fundamentals of neural networks such as applicabilities
and training will also be presented, and lastly, we will discuss the chal-
lenges faced during the training process and how these can be addressed.

4 . 1 LEARNING SCENARIOS

Depending on the task at hand, a machine learning (ML) model can
be trained in a variety of ways, and in most cases, it boils down to a
question of how di�cult training data is to obtain. If training data is
readily obtained as corresponding pairs of input and output, one can
make use of supervised learning, where all input data has a “correct”
output that the ML model should strive to reproduce through its train-
ing phase. This is opposed to the case of unsupervised learning where
all data is unlabelled, meaning that only the input to the ML model
is available [80]. It stands to reason that the performance of the ML
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model, in this case, is more di�cult to quantitatively evaluate, and this
makes the use cases of this particular learning scenario quite di�erent
from those of supervised learning. Common applications of unsuper-
vised learning include cluster analysis, where clusters in the data are
identified by the ML model, and dimensionality reduction, where the
dimensionality of the parameter space is decreased whilst retaining the
same meaningful properties as the original data.

One does not simply1 always possess all training data needed for a
good ML model initially due to, e.g., a very large parameter space or
a high computational cost of obtaining training data. After training
an ML model with initial training data, the accuracy of the model
might not be su�cient in certain regions of the parameter space due to
undersampling in the region or a rapidly changing function value. In this
case, one can add new points (either manually or automatically) to the
original training data to accommodate this problem. This is known as
active learning, and the goal here often is to obtain a high performance
and accuracy while limiting the amount of training data [80]. This way
of automatically collecting new data is more pronounced in the case of
reinforcement learning, where the ML model is collecting information
based on a reward system. The training and testing is in this case
intermixed such that the ML model iteratively learns to maximise the
reward through a series of actions.

In this section, we will have a deeper look into supervised learning
and active learning since these are the only learning scenarios relevant
to this thesis.

4 . 1 . 1 SUPERVISED LEARNING

Supervised learning uses training data consisting of inputs and outputs.
The goal is to produce a machine learning model that can accurately
predict the outputs based on only the inputs. In order to do this, it
needs a way to accurately quantify its performance such that this perfor-
mance can be optimised. The error of the model is quantified through
the loss function which is a function of the machine learning model’s
output. The loss is then minimised using an optimiser resulting in a
machine learning model with good predictive capabilities. The optimi-
sation of the model is typically iterative, allowing the model to learn
over time and get increasingly better predictive accuracy.

1 ... walk into Mordor.
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Generally, supervised learning can be separated into two di�erent
types of problems – classification and regression [81].

• Classification aims at assigning the input data to certain prede-
fined categories. The model learns to recognise specific features or
characteristics in the input data and then decides which category
the data belongs to. An example of classification could be image
recognition, where the training data consists of images (input)
and associated labels of the categories (output). For certain ma-
chine learning algorithms, one would typically have a discretised
probability distribution as the output, indicating which category
has the highest probability of matching the input. A common loss
function quantising the error, in this case, is the categorical cross-
entropy (CCE) loss function which is defined (for a single training
data example) as LCCE(y) = ≠log(yi), where y = {y1, y2, ..., yn}
are the probabilities (of n categories) outputted by the model and
the ith category is the true one [82]. The logarithm ensures that
incorrect predictions are heavily penalised. Several algorithms
for classification exist including neural networks, linear classifiers,
support vector machines (SVMs), decision trees, k-nearest neigh-
bour (kNN), and random forest [81].

• Regression is used to approximate functions, thus providing a re-
lation between dependent and independent variables. The inputs
and outputs of the training data are exactly the values of the inde-
pendent and corresponding dependent variables, respectively. The
output of the machine learning model will then be a prediction of
the dependent variable corresponding to the independent variable
used as input to the model. A common loss function in this case
is the mean squared error (MSE) loss function where the di�er-
ence between the true output and the predicted output is squared
and then averaged across the number of dependent variables, i.e.,
LMSE(y) = 1

n

P
n

i=1(yi ≠ ŷi)2, where y = {y1, y2, ..., yn} are the
predicted values (for a single training data example) of the n de-
pendent variables and ŷi is the true output of the ith dependent
variable. Regression can be performed using linear regression and
non-linear regression, but also more advanced algorithms such as
neural networks [81].

Machine learning is not just a one-thing-fits-all kind of field only rely-
ing on a single algorithm to perform all tasks. Instead, numerous algo-
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rithms are available depending on the task at hand, each with strengths
and weaknesses. Some of the most common algorithms for supervised
learning are the following [81]:

• Neural networks are a popular choice for various machine learn-
ing tasks due to their high number of free parameters. It draws
inspiration from biological neural networks and mimics the inter-
connectivity herein using layers of artificial neurons connected to
each other. The input is passed through the network to compute
the predicted output which is then used to compute the loss. This
type of algorithm is well suited for both supervised learning, un-
supervised learning, and semi-supervised learning.

• Naïve Bayes are classifiers based on Bayes’ theorem and “naïvely”
assumes that features of the model are independent. Even though
this assumption is often violated in realistic scenarios2, the per-
formance of the Naïve Bayes classifiers is often quite good. There
are three di�erent types of Naïve Bayes; Multinomial, Gaussian,
and Bernoulli.

• Support vector machines (SVM) are most often used for classifi-
cation, and they involve the construction of hyperplanes between
classes of data points in the parameter space. This hyperplane
is known as the decision boundary separating di�erent classes of
data points on either side.

• k-nearest neighbour (kNN) is an algorithm that assumes similar
data being in the vicinity of each other in the parameter space. A
new classification can then be made by looking at the k nearest
neighbours of the new point in the parameter space and assigning
it the same class as the majority within the k nearest neighbours.
For small test data sets, this is a widely used algorithm for classi-
fication, but for larger data sets, the computation time grows too
large, since the distances to all points need to be computed.

• Random forest is a collection of uncorrelated decision trees that
are used for both classification and regression. The algorithm
seeks to solve the inaccuracy of basic decision trees by having an
ensemble of di�erent trees all predicting the output at once. For
classification, the most popular output is used, and for regression,
the average of the outputs is used.

2 In text classification, words are typically dependent upon preceding words.
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• Linear regression is used to find a straight line that best describes
the relationship between the dependent and independent variables.
This is done by minimising the squared distances between the line
and all the data points.

• Logistic regression is used for classification (despite the name),
utilising the logistic function (a sigmoid function asymptotically
approaching 0 and 1 for increasingly negative and positive inputs,
respectively) to solve binary classification problems.

As an example of supervised learning, let us take a look at simple linear
regression. Let x̂ = {x̂1, x̂2, ..., x̂n} be the data for our independent vari-
able and ŷ = {ŷ1, ŷ2, ..., ŷn} be the data for our dependent variable. We
will relate the dependent variable to the independent variable through
this linear relation,

y(x) = mx+ b , (4.1)

where m is the slope of the best-fitting line and b is the y-intercept of
the line. Both of these parameters are unknown and should thus be
determined through optimisation. We will use the mean squared error
loss function for the optimisation which in this case looks like

LMSE(y) =
1
n

nX

i=1
(y(x̂i)≠ ŷi)

2 =
1
n

nX

i=1
(mx̂i + b≠ ŷi)

2 , (4.2)

where y = {y(x̂1), y(x̂2), ..., y(x̂n)} are the outputs of the linear model
for the data of the independent variable. This quantity can be optimised
analytically, which isn’t the case for more advanced machine learning
algorithms. In order to optimise this, both partial derivatives of the loss
function with respect to the two parameters, m and b, need to equate
zero, i.e.,

ˆL
ˆm

=
2
n

nX

i=1
(mx̂i + b≠ ŷi)x̂i = 0 , (4.3)

ˆL
ˆb

=
2
n

nX

i=1
mx̂i + b≠ ŷi = 0 . (4.4)
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x 0 1 2 3 4 5 6 7 8 9 10

y 5 8 13 15 18 21 23 28 30 34 36

Table 4.1: Example data for linear regression. x and y are the independent
and dependent variables, respectively.
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Figure 4.1: Data points from the example data in tabel 4.1 along with the
best-fitting line found through simple linear regression.

These are now two equations with two unknowns, and the solutions are
straightforwardly found to be

m =
n
P

n

i=1 x̂iŷi ≠
P

n

i=1 x̂i
P

n

i=1 ŷi
n
P

n

i=1 x̂
2
i
≠ (
P

n

i=1 x̂i)
2 , (4.5)

b =
1
n

 
nX

i=1
ŷi ≠m

nX

i=1
x̂i

!
. (4.6)

These equations allow us to infer the best-fitting line of any simple
linear regression problem without having to optimise the parameters
numerically. For the data in table 4.1 the parameters equate to m = 3.1
and b = 5.5 and the best-fitting line along with the data points are
shown in figure 4.1.

4 . 1 . 2 ACT IVE LEARNING

Having a representative and broad data set as training data is key when
training a machine learning model to perform well. If a large part of
the parameter space is only sparsely represented in the training data,
the model will not have enough information to accurately predict the
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output of new input located in this sparsely sampled region. A way to
be sure to be able to accurately predict the output of any reasonable
input is to include a large number of labelled points (pairs of input and
true output) in the training data and train the model extensively on
this broad set of data. This ensures that the training only needs to
be done a single time in order to yield a well-rounded machine learning
model with accurate predictive ability across the entire parameter space.
This is known as passive learning. For a continuous parameter space,
one might wonder how finely sampled it needs to be to ensure accurate
predictions, and quite frankly this can be di�cult to know beforehand.
One might also be limited in the amount of obtainable labelled data by
the dimensionality of the parameter space. To solve these issues, one
can let the machine learning model choose which data points to label
(or compute the true output for) and use for training. This is the basic
idea behind active learning [83].

The active learning scenario operates through an iterative process of
selection and retraining, and the basic steps usually involved in this are
as follows [84]:

1. Initialisation: An initial set of training data needs to be selected
and properly labelled with categories for classification problems
or true output values for regression problems. This will serve as
the basis for the first model training.

2. Model training: Using the available labelled data, a machine
learning model is trained through supervised learning.

3. Query strategy: New data points to be labelled will be selected
by the trained model based on a query strategy either prioritising
decreasing the uncertainty or selecting the most dissimilar points
to the ones already in the training data. Notable query strategies
include uncertainty sampling, diversity sampling, and query-by-
committee sampling.

4. Labelling: The newly selected points will need to be labelled by
an oracle, i.e., the source of ground truth. This can be done by
either a human annotator or an automatic computation. In the
case of classification such as image classification, a human anno-
tator is usually required, but for regression problems where the
ground truth is the output of a computer program or similar, the
labelling can be done automatically without the need for human
interference.
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5. Model update: The newly labelled points are added to the train-
ing data and used to retrain the machine learning model.

6. Active learner loop: Steps 3 to 5 are repeated iteratively until
the addition of new data no longer provides significant improve-
ments to the model’s performance.

The benefits of active learning are many, and it is especially ad-
vantageous when the process of labelling the input data is costly or
time-consuming. Active learning typically leads to the same (or bet-
ter) performance as passive learning using much less training data since
this training data consists of the most informative samples meticulously
chosen to best represent the features of the entire data set. This leads
to only a small fraction of the data having to be labelled which is ex-
tremely cost e�ective when labelling is challenging. By only keeping
the most relevant samples of the training data, both the accuracy and
convergence improve as well since the set of training data is smaller
so as to not have the machine learning model waste resources on the
more irrelevant samples during the training process. This also leads to
a higher robustness to noise and, depending on the query strategy, the
active learning algorithm can choose the most diverse points in order
to improve generalisation as well.

There are di�erent measures of how informative a data point is
to the machine learning model and these form the bases of di�erent
query strategies [84]. Uncertainty sampling selects the samples that
are expected to reduce the uncertainty of the machine learning model
the most. This uncertainty is typically entropy or margin-based
uncertainty. Diversity sampling seeks to select new data points based
on their diversity in the current set of training data. The measure of
diversity could be dissimilarity between samples, e.g., for a continuous
parameter space, it could be the Euclidean distance between data
points. This helps to improve the model’s generalisation ability by
providing data points representative of the entire parameter space.
query-by-committee sampling involves training several individual
machine learning models on di�erent subsets of the labelled data
and selecting new points based on where the models disagree. The
idea is that new points in regions where the models disagree are very
informative and can enable the next ensemble of models to perform
better in these regions. Expected model-change-based sampling aims at
selecting the points that are expected to lead to the largest di�erence
in the predicted output when added to the training data. The existence
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of points outside the training data that would lead to a large variation
in predictions when included in the training data is a sign that these
points contain information that the current training data is lacking.
Adding them to the training data thus ensures a better performance
by the model.

As a simple example of active learning, we will use the Fashion-MNIST
dataset [85] consisting of 70,000 28◊28 pixel greyscale images of cloth-
ing items in 10 di�erent categories. We will set aside 10,000 points
as a set of test data which we can use to evaluate the performance of
our trained models on samples not in the training data. This leaves us
with 60,000 samples in the data pool from which the active learner can
request new samples. We use a neural network with a single hidden
layer with 128 neurons and ReLU as the activation function (see sec-
tion 4.2), as well as a softmax activation function on the output layer
in order to have the 10 outputs as a discrete probability distribution.
The active learner is initialised with 500 randomly selected data points
from the data pool, and in each iteration, the trained model is used
on the remaining samples in the data pool. This gives us a (discrete)
probability distribution for each sample in the data pool that we can
use to compute an uncertainty measure for every sample. We use the
entropy as the uncertainty measure [86],

Ei = ≠
10X

k=1
p
i

k
log(pi

k
) , (4.7)

where Ei is the entropy of the i
th sample in the data pool and p

i

k
is

the probability of the ith input image in the data pool belonging to the
k

th category. Using this measure, the 500 samples from the data pool
with the highest entropy are selected to be labelled and included in the
training data of the active learner. We continue this for 50 iterations
and compute the accuracy on the 10,000 test data images each time. We
also compute the accuracy on the test data of passive learners trained
with di�erent amounts of randomly selected points from the data pool to
see the di�erence when using the uncertainty measure. The results are
shown in figure 4.2, and from this, we can see that the active learner is
able to achieve the same accuracy as a passive learner using the entire
data pool with less than a third of the samples. The images in this
data set were already labelled, but in a realistic scenario, this would
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Figure 4.2: Accuracy on 10,000 test data samples as a function of amount
of labelled training data. Curves for both active (red) and passive (black)
learning are shown. The horizontal, grey, dashed line represents the accuracy
when using the entire data set of 60,000 samples for passive training, and the
vertical, green, dashed line represents the amount of labelled data acquired by
the active learner in order to achieve the same accuracy.

save the oracle (human annotator or costly computation) nearly 70% of
the work.

4 . 2 NEURAL NETWORKS

Artificial neural networks (ANNs) are foundational in modern machine
learning and underpin many groundbreaking advancements in artificial
intelligence. The concept of ANNs originated in 1943 when Warren
McCulloch and Walter Pitts modelled a simple system of artificial neu-
rons using electrical circuits to describe biological neural networks [87].
Heavily inspired by biological neural circuitry, ANNs adopt much of
their terminology from neuroscience. In 1957, Frank Rosenblatt intro-
duced the perceptron [88], the simplest form of a neural network, con-
sisting of input neurons connected to an output neuron. The perceptron
could “learn” patterns by adjusting connection weights to minimise the
di�erence between predicted and actual outputs, an early example of su-
pervised learning. However, scalability issues soon became apparent, as
Marvin Minsky highlighted in his 1969 book Perceptrons [89], noting the
challenges of extending perceptrons to multiple layers. This limitation
stalled the progress in neural networks, with little to no advancements
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in more than a decade – now known as the AI winter [90]. Interest
revived in 1985 when David Rumelhart, Geo�rey Hinton, and Ronald
Williams formalised the use of backpropagation for training multi-layer
networks [91]. This breakthrough enabled the development of advanced
architectures such as convolutional neural networks and recurrent neural
networks, propelling the field to its current status.

If we take a closer look at Rosenblatt’s perceptron, it uses the
McCulloch-Pitts neuron model, where inputs and outputs are binary
numbers. This is inspired by biological neurons either firing or not based
on some kind of threshold. We might label the binary inputs from a layer
of N input neurons as x1,x2, ...,xN , and the (real-numbered) weights
similarly as w1,w2, ...,wN . Rosenblatt proposed the idea of computing
the binary output as

output =

8
<

:
1, if

P
N

i=1wixi Ø threshold

0, if
P

N

i=1wixi < threshold
, (4.8)

where the threshold is a real number like the weights and just an intrin-
sic parameter of the neuron [92]. A more general way of expressing this
threshold is through a bias of the neuron. This can be interpreted as
the invariant part of the prediction if the predicted outputs are centred
around a non-zero mean [82]. Equation (4.8) then becomes

output =

8
<

:
1, if

P
N

i=1wixi + b Ø 0

0, if
P

N

i=1wixi + b < 0
, (4.9)

where b is the bias of the neuron.
Modern neural networks typically use other kinds of neuron models

that work with real-numbered inputs and outputs instead of binary
numbers. An example of this is the sigmoid neuron where the output
is computed using the sigmoid function3,

output = ‡(z) =
1

1 + e≠z , where z =
NX

i=1
wixi + b . (4.10)

This ensures a real-valued output between 0 and 1 instead of a binary
output, and it also introduces non-linearity into the network, which

3 The sigmoid function refers to the logistic function in this case.
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greatly improves the usability for non-trivial problems. Furthermore, it
is a smooth function, which means that changes in the output depend
linearly on changes in the weights and the bias, i.e., small changes in
weights and bias lead to a small change in output. This linearity is very
helpful during the training process, since knowing the response of the
output makes adjusting the weights and bias much easier [92].

We can generalise this idea by replacing the sigmoid function with an
arbitrary function, known as the activation function, a(x). This now
turns the output computation into

output = a

 
NX

i=1
wixi + b

!
. (4.11)

Di�erent activation functions have di�erent strengths and use cases, and
despite it making the training easier, they do not necessarily have to be
smooth, e.g., using a step function would result exactly in Rosenblatt’s
perceptron.

4 . 2 . 1 MULT ILAYER NEURAL NETWORKS

A perceptron only consists of a single computational layer (the output
layer), which limits the usability for more complicated problems. In
order to be able to fully approximate any function, multiple layers are
needed. The additional layers between the input and the output layer
are called hidden layers due to their computations being hidden from
the user [82]. This multilayered architecture is known as feed-forward
networks because computations from one layer feed into the next layer
as input. This becomes apparent when describing the network mathe-
matically. A schematic of a fully connected neural network is shown in
figure 4.3.

We will consider a network with a total of M layers with di�erent
numbers of neurons in each layer. We label layers with the index
j = 0, 1, 2, ...,M ≠ 1 where j = 0 refers to the input layer and j = M ≠ 1
refers to the output layer. This means that we will have M ≠ 1 compu-
tational layers, as the input layer does no computations. All neurons
within a layer will similarly be labelled with the index i = 1, 2, ...,Nj

where Nj is the total number of neurons in the jth layer. Each neuron
in layer j > 0 receives input from all neurons in the previous layer, so
these inputs can be labelled using three indices; the layer of the receiv-
ing neuron, the index of the receiving neuron within that layer, and the
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Figure 4.3: A depiction of a fully connected neural network showing the
input layer, the hidden layers, and the output layer. The lines connect any
two neurons in consecutive layers and have an associated weight, w, while the
neurons (except the ones in the input layer) each have an associated bias, b.

index of the transmitting neuron in the previous layer. We can now
compute the output, xj

i
, of the ith neuron in the jth layer as

x
j

i
= aj

0

@
Nj≠1X

k=1
x
j≠1
k

w
j

i,k + b
j

i

1

A , j > 0 , (4.12)

where the superscripts (j) of xj≠1
k

, wj

i,k, and b
j

i
refer to the layer of the

neuron in question and the subscripts (i and k) refer to the indices of
the neuron in the current layer and of the neuron in the previous layer,
respectively, and aj(x) is the activation function of the neurons in the
j
th layer.
This notation is a bit cumbersome, due to the number of indices,

so we will switch to a vector-based notation instead. We will define
the vector Xj = {xj1,x

j

2, ...,x
j

Nj
} as the vector of the outputs from the

neurons of the jth layer (and thus input to the next layer) and similarly
the vector Bj = {bj1, b

j

2, ..., b
j

Nj
} for the biases of the jth layer. We will

also define the weight matrices W j (1 Æ j ÆM ≠ 1), containing all the
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weights between the jth and (j ≠ 1)th layers. These matrices will have
the dimensions Nj ◊Nj≠1 and will look like this:

W j =

2

66666664

w
j

1,1 w
j

1,2 . . . w
j

1,Nj≠1

w
j

2,1 w
j

2,2 . . . w
j

2,Nj≠1
...

... . . . ...

w
j

Nj ,1 w
j

Nj ,2 . . . w
j

Nj ,Nj≠1

3

77777775

. (4.13)

We can now rewrite equation (4.12) more compactly as

Xj = aj
�
W j · Xj≠1 + Bj

�
, j > 0 . (4.14)

To get the full output vector of the entire neural network, we must
feed the output as input to the next layer throughout all the layers
resulting in a nested structure of equation (4.14). In the case of four
layers (j = 0, 1, 2, 3), this will look like

X3 = a3
�
W 3 · a2

�
W 2 · a1

�
W 1 · X0 + B1

�
+ B2

�
+ B3

�
, (4.15)

where X0 refers to the original inputs to the network.
From this, we can really see the strength of the non-linearity intro-

duced by the activation functions if we consider a trivial linear activation
function a(x) = x. This means that we can get rid of the activation
functions altogether, and using the distributive and associative proper-
ties of the matrix product, we arrive at the following:

X3 = W 3 ·
�
W 2 ·

�
W 1 · X0 + B1

�
+ B2

�
+ B3

= W 3 ·W 2 ·W 1 · X0 +W 3 ·W 2 · B1 +W 3 · B2 + B3

=
�
W 3 ·W 2 ·W 1

�
| {z }

E�ective weight matrix

· X0 +
�
W 3 ·W 2 · B1 +W 3 · B2 + B3

�
| {z }

E�ective bias vector

.

(4.16)

This shows that without the non-linearity of the activation function,
one will never achieve anything more than the performance of a single
computational layer, thus rendering the network no better than a linear
transformation. Activation functions are thus crucial for deep learning
with many hidden layers. It can even be shown [93] that a network
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Figure 4.4: Graphs of the activation functions described in this section di-
vided into three categories: ReLU-like functions, sigmoid functions, and radial
basis functions. The values of parameters are shown in the legend where rele-
vant.

with only a single hidden layer with a non-linear activation and a linear
output layer is su�cient to approximate any function at all (as long as
the hidden layer has enough neurons). This is known as the universal
approximation theorem.

4 . 2 . 2 ACT IVATION FUNCTIONS

Now that we know activation functions are essential for deep learning, it
would be beneficial to look at the most commonly used ones. Generally,
one can identify a few families of activation functions, e.g., the ReLU-
like functions, the sigmoid functions, and the radial basis functions.
Almost all popular activation functions fall under one of these categories.
This section will go through the most common choices in each category.
They are all depicted in figure 4.4.
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The ReLU (Rectified Linear Unit) function returns the non-negative
part of its argument, meaning that it is linear for positive inputs and
zero for negative inputs, i.e., f(x) = max(0,x). The negative part of the
function renders the neuron inactive similar to how a biological neuron
will not fire if it does not experience its minimum level of stimulus.
There are numerous variations of this activation function in order to
tackle its possible problems:

• Leaky ReLU : To mitigate the problem of dying ReLU (see sec-
tion 4.2.4), one can introduce a small slope to the negative part
of the activation function. This ensures that gradients remain
nonzero, guiding the training process e�ectively.

• Parametric ReLU (PReLU): This generalises the Leaky ReLU by
adding an arbitrary slope to the negative part.

• Exponential Linear Unit (ELU): This furthermore changes the
negative part of the ReLU function to f(x < 0) = – (ex ≠ 1), and
introduces a smooth transition between the positive and negative
parts, ensuring di�erentiability everywhere.

• Gaussian Error Linear Unit (GELU): This is a di�erent way of
introducing a smooth transition in the ReLU function. The func-
tion looks like f(x) = 1

2x (1 + erf(x/Ô2)) and ensures the same
asymptotic behaviour as the normal ReLU function.

• Softplus: Although this function might stand out in this cate-
gory, it has the same asymptotic behaviour as the normal ReLU
function with a large smoothing in between the two sides. The
function is the antiderivative of the logistic function (which is also
commonly used as an activation function), i.e., f(x) = ln (1 + ex).

• Linear : We should also include the linear activation function
f(x) = x in this category since it is a special case of the para-
metric ReLU function. This is the trivial activation function that
is typically only used in output layers.

Sigmoid functions are also widely popular as activation functions due
to their squashing property, ensuring a bounded response of the neu-
rons [94]. A sigmoid function is any function exhibiting an S-shaped
behaviour, and there are thus various to choose from:
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• Logistic function: This is what most people refer to when mention-
ing “the sigmoid function”. It looks like f(x) = (1 + e≠x)≠1 and
is thus bounded between 0 and 1, making it a natural extension
of the binary McCulloch-Pitts neuron model.

• Hyperbolic tangent: The hyperbolic tangent takes the form
tanh(x) = (ex ≠ e≠x) / (ex + e≠x), and it is equivalent to a scaled
and o�set logistic function. It is instead bounded between -1 and
1 and has thus a few advantages over the logistic function. Firstly,
inputs keep their sign, i.e., near-zero maps to near-zero, negative
to negative, and positive to positive, and secondly, the output
of each layer is centred around zero from the beginning of the
training process, which can lead to a faster convergence [95].

• Heaviside step function: This function is 0 for negative arguments
and 1 for non-negative arguments, which makes it equivalent to
the McCulloch-Pitts neuron model. It does not have much advan-
tage over the other sigmoids apart from being easily computed
due to it only needing a comparison operation.

• Hard tanh: This function is a piecewise linear function that is -1
for inputs below -1, 1 for inputs above 1 and linear between -1 and
1. It is sometimes preferred over the normal hyperbolic tangent
due to it being computationally less expensive. A disadvantage is,
however, that it saturates for inputs above 1 and below -1, similar
to the dying ReLU problem [96].

Another class of activation functions are the radial basis functions
(RBFs) specifically used in RBF networks. These are a special type
of feed-forward network that only has a single hidden layer, but the
RBFs ensure a very powerful approximating capability. They also ex-
hibit faster convergence during training and are used for classification,
regression, and time-series predictions [97]. RBFs are functions that
only depend on the Euclidean distance between the input and a defined
centre of the function. In RBF networks, this centre is defined using a
“prototype” input from the training set that each neuron stores. There
are various functions with this property that are used in RBF networks,
and I will be using the parameter r = ||x≠ c|| as the Euclidean distance
between the input x and the centre c:

• Gaussian: This is the most popular choice. The function is nor-
malised such that its maximum is 1, i.e., f(r) = exp

�
(Ár)2�,



100 machine learning

where Á is a broadness parameter and inversely proportional to
the Gaussian’s standard deviation.

• Inverse multiquadric: This has the same asymptotic behaviour
as the Gaussian but with a slightly di�erent shape. Normalised
in the same way, it looks like f(r) =

�
1 + (Ár)2�≠1, where Á is

parameter of the broadness.

• Bump function: This is a piecewise function with a value of
f (r < 1/Á) = exp

⇣
≠
�
1 + (Ár)2�≠1

⌘
for small distances away

from the centre and 0 if the distance is larger than 1/Á.

Lastly, it is worth mentioning the unique softmax activation function,
which is almost only used in the output layer of classification networks.
This activation function ensures that all output neurons sum to unity,
such that each output can be considered a probability of the input
matching the category corresponding to that output neuron. If a net-
work is trained well and the input unambiguously belongs to one of
the categories, the softmax activation function should ensure that every
output neuron except for the one corresponding to the correct category
returns a value close to zero and a value close to 1 for the correct cat-
egory. If an answer is ambiguous, i.e., the input does not look entirely
like the inputs in the training data of the same category, multiple out-
put neurons will return probabilities of similar significance. With the k
outputs denoted by v = {v1, v2, ..., vk}, the activation function for the
i
th output is defined as [82]

F(v)i =
exp(vi)P
k

j=1 exp(vj)
’i œ {1, 2, ..., k} . (4.17)

4 . 2 . 3 BACKPROPAGATION

Ever since it was popularised by Rumelhart, Hinton and Williams [91],
the backpropagation algorithm has been the backbone of modern-day
neural networks, and many current applications would not be possible
without it. The aim of backpropagation is to compute the partial deriva-
tives ˆL/ˆw and ˆL/ˆb of the loss function L with respect to any bias,
b, or weight, w [92]. The loss function is a function of the network’s
output that describes the di�erence between the predicted output and
the true output. This is the function that we need to minimise during
the training process. An important assumption of the loss function is
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that one should be able to write it as an average of loss functions for
individual examples of the training data, i.e.,

L =
1
n

nX

i=1
Li, (4.18)

where Li is the loss for the ith training data example. This assumption
is crucial since it is in fact the partial derivatives of single training exam-
ples, ˆLi/ˆw and ˆLi/ˆb, that we can compute, and the partial derivatives
of the entire loss function are then computed as the average [92]. For
now, we will drop the subscript on the loss function and L will thus
refer to the loss of a single training example. The loss function will
then only depend on the weights and biases, since the input and output
are considered constants.

It is useful to define a measure of “error”, ”j
i
, for the i

th neuron in
the jth layer as well as a shorthand notation of the weighted input to
the neuron, zj

i
=
PNj≠1

k=1 x
j≠1
k

w
j

k,i + b
j

i
. We will define the error as

”
j

i
© ˆL

ˆz
j

i

. (4.19)

This is thus a measure of how much a change in the weighted input
of the particular neuron can a�ect the loss function. If it is a small
number, small changes to zj

i
will not have a significant impact on L and

the neuron is then close to optimal. In matrix form, the weighted input
vector of the jth layer is given by Zj = W j · Xj≠1 + Bj , and the error
vector, Dj , of the jth layer is similarly given by

Dj © ÒZjL , (4.20)

where Òxf denotes the gradient of the scalar function f with respect to
the vector x and is a column vector with partial derivatives as elements.

Backpropagation is based on four equations computing this error mea-
sure of every neuron and relating it to the partial derivatives of the loss
function with respect to weights and biases. Given a network with M

layers indexed4 by j = 1, 2, ...,M , the output of the final layer is denoted

4 The indices has been shifted by 1 compared to section 4.2.1 to ease the notation
when dealing with the final layer.
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by XM = aM (WM · XM≠1 + BM ). We can derive the error measure of
the final layer in terms of its output using the chain rule,

J f¶g(x) = J f (g(x)) · J g(x) , (4.21)

where the J f (x) denotes the Jacobian matrix for the vector func-
tion f (x), and the “¶” denotes the composition of two functions, i.e.,
f ¶ g(x) = f (g(x)). The elements of the Jacobian matrix are defined
as

�
J f (x)

�
i,j =

ˆfi

ˆxj
. (4.22)

We can similarly write the loss function as a composite function of the
weighted input vector, ZM≠1,

L ¶ aM (ZM ) = L (aM (ZM )) , (4.23)

where the loss function, L is a scalar function with vector input, and
the activation function, aM , is a vector function. This results in the
composition L ¶ aM being a scalar function as well. Using the chain
rule from equation (4.21), we can now write

JL¶aM (ZM ) = JL(aM (ZM )) · JaM (ZM ) . (4.24)

Recall that XM = aM (ZM ), and that the Jacobian of a scalar function
equals the transpose of the gradient of that function. We can now use
this to simplify the expression,

(ÒZML)T = (ÒXML)T · JaM (ZM ) , (4.25)

and transpose it,

ÒZML =
�
JaM (ZM )

�T ·ÒXML . (4.26)

By examining the last remaining Jacobian, we note that the (i, j)th ele-
ment is the partial derivative ˆaM ,i/ˆz

M
j , where aM ,i = x

M

i
is the output

of the ith neuron in the M th layer. The value of this partial derivative is
thus only non-zero for diagonal elements since the weighted input to the
j
th neuron does not a�ect the output of the ith neuron unless i = j. The

Jacobian is then a diagonal matrix, which means that the multiplication
between the transpose of it and a column vector will be equivalent to



machine learning 103

elementwise multiplication between the vector and a vector consisting
of the diagonal elements of the Jacobian. This elementwise product
is known as the Hadamard product [92], denoted by “§”, and we can
now use it to simplify equation (4.26) and arrive at the expression for
the error measure of the final (M th) layer, by noting that the left-hand
side of the equation exactly corresponds to our definition of the error
measure from equation (4.20):

DM = ÒZML = ÒXML§ aÕM (ZM ) , (4.27)

where the prime denotes derivatives of elements with same indices, i.e.,
f Õ(x) = {ˆf1/ˆx1, ˆf2/ˆx2, ..., ˆfn/ˆxn}. Equation (4.27) is the first equa-
tion necessary for backpropagation, and intuitively, it expresses that the
error measure of the output neurons, i.e., how much we can do to im-
prove the weights and biases associated with the neurons, is a product
of the derivative of the loss function with respect to the output and the
slope of the activation function for the weighted input. In other words,
we need to have both a decent slope of the activation function and a
significant derivative of the loss function for the particular neuron to be
helpful in improving the network.

The second equation similarly computes the error measure of an arbi-
trary layer based on the error of the next layer, and this is the reason for
the name “backpropagation”. First forward pass is executed in order to
compute the loss function, and then one propagates backwards through
the layers to compute the response of the loss function to small changes
in each weight and bias. We can again use the chain rule to derive
the error of the second-to-last layer by expressing the loss function as a
function of the weighted input of that layer,

L¶M≠1(ZM≠1) = L(aM (WM · aM≠1(ZM≠1) + BM )) , (4.28)

where L¶
j

is introduced as a shorthand for the implicit composite func-
tion that captures the dependence of the loss function, L, on the
weighted input vector, Zj , of the j

th layer through successive com-
positions in the network. If we define the vector function zj(x) ©
W j · x + Bj , we can write the loss function as a composite function of
four functions,

L¶M≠1(ZM≠1) = L ¶ aM ¶ zM ¶ aM≠1(ZM≠1) . (4.29)
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Using the chain rule, the derivative with respect to ZM≠1 becomes

JL¶aM¶zM¶aM≠1(ZM≠1)

= JL(XM ) · JaM (ZM ) · JzM (XM≠1) · JaM≠1(ZM≠1) ,
(4.30)

which we can simplify using results from the previous derivation,

�
ÒZM≠1L

�
T

= (ÒXML§ aÕM (ZM ))T| {z }
(DM )T

·JzM (XM≠1) · JaM≠1(ZM≠1) .

(4.31)

The last Jacobian is also diagonal for the same reasons as its j = M

counterpart, and we can thus again use the Hadamard product (after
transposing the equation),

DM≠1 = ÒZM≠1L =
h�
JzM (XM≠1)

�T · DM

i
§ aÕM≠1(ZM≠1) .

(4.32)

We now only need to compute the Jacobian JzM (XM≠1), which we
can do by considering the form of the vector function zM (XM≠1) =
WM · XM≠1 + BM . The first term on the right-hand side is linear in
XM≠1 while the second term does not depend on XM≠1. This means
that the Jacobian is simply the weight matrix WM , which we can now
substitute into equation (4.32),

DM≠1 =
h�
WM

�T · DM

i
§ aÕM≠1(ZM≠1) . (4.33)

In order to arrive at the second equation of backpropagation, we note
that the above equation relates the error of the (M ≠ 1)th layer in terms
of that of the next layer. We can thus generalise this to a recurrence
relation,

Dj =
h�
W j+1

�T · Dj+1
i
§ aÕj(Zj) , 1 < j < M . (4.34)

We can think about this equation in much the same way as the previous
one, i.e., the product of the derivative of the loss function with respect
to the output of the layer and the slope of the activation function for
the weighted input to the layer. The loss function, however, does not
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appear explicitly, but only through the error measure of the next layer
propagated backwards using the transpose of the weight matrix between
the two layers. Just as the weight matrix is used to propagate inputs
from one layer to the next during the forward pass, we can think of
applying the transpose of the weight matrix as the opposite of that.

The final two equations of backpropagation relate the error measure
to the partial derivatives of the loss function with respect to the biases
and weights. If we take a look at the error measure of the j

th layer,
recall that this is defined as Dj © ÒZjL. We can again write the loss
function as a composite function to have it as a function of the bias, Bj ,
of the jth layer, but first, we need to express the weighted input, Zj , in
terms of the bias using the following definition,

zBj (Bj) ©W j · Xj≠1 + Bj . (4.35)

We can now write the composite function relating the loss function and
the bias as

L¶j (zBj (Bj)) = L¶j ¶ zBj (Bj) , (4.36)

and use the chain rule once more,

JL¶j¶zBj
(Bj) = JL¶j (Zj) · JzBj

(Bj) . (4.37)

The Jacobian on the left-hand side is exactly the transpose of the gradi-
ent of the loss function with respect to the bias vector of the jth layer,
and the first Jacobian on the right-hand side is exactly the transpose
of the gradient of the loss function with respect to the weighted input
of the j

th layer, and thus the error measure of that layer. The last
Jacobian can be found by considering the definition in equation (4.35).
We note that only the second term depends on Bj and is in fact exactly
equal to it, so the last Jacobian is just the identity matrix. This means
that the gradient of the loss function with respect to the bias vector of
the jth layer is equal to the error measure of that layer,

ÒBjL = Dj , 1 < j < M . (4.38)
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The last equation can be derived in a similar fashion by defining yet
another vector function with the weight matrix as the argument,

zWj (W j) ©W j · Xj≠1 + Bj . (4.39)

The composite function relating the loss function and the weight matrix
can be expressed as

L¶j (zWj (W j)) = L¶j ¶ zWj (W j) , (4.40)

and we can now use the chain rule one last time,

JL¶j¶zWj
(W j) = JL¶j (Zj) · JzWj

(W j) . (4.41)

The elements of Jacobian on the left-hand side are the exact partial
derivatives of the loss function with respect to each weight in the weight
matrix that we want to compute, with the (i, k)th element being the par-
tial derivative ˆL/ˆw

j
i,k. The first Jacobian on the right-hand side is once

again just the transpose of the error measure of the jth layer, but the
last Jacobian will be a rank 3 tensor since it is the derivative of a vector
with respect to a matrix. To simplify this, it is easier to consider the
individual components of the left-hand side of equation (4.41). We can
write an expression for the (i, k)th component of the partial derivative
of the loss function with respect to the weight matrix,

ˆL
ˆw

j

i,k
= (Dj)

T · ˆZj

ˆw
j

i,k
, (4.42)

where the partial derivative on the right-hand side is a column vector
with elements ˆz

j
l/ˆw

j
i,k, where we define the components of the weighted

input vector as

z
j

l
=

Nj≠1X

k=1
x
j≠1
k

w
j

l,k + b
j

l
, l = 1, 2, ...,Nj . (4.43)

We note that the partial derivative of this with respect to wj

i,k is xj≠1
k

if
l = i and 0 for all other values of l. This turns the inner product with
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the error vector in equation (4.42) into a product between just the ith
elements of the vectors,

ˆL
ˆw

j

i,k
= ”

j

i
x
j≠1
k

, (4.44)

which is the final result for the individual components of the weight
matrices. We, however, still want the last equation to be in matrix
form as well as the other three, and to accomplish this, we note that
the right-hand side of equation (4.44) is merely the (i, k)th element of
the outer product between the vectors Dj and Xj . This outer product
can be substituted into the right-hand side of equation (4.41) where we
also replace the notation of the Jacobian with a partial derivative of the
loss function with respect to the weight matrix,

ˆL
ˆW j

= Dj · (Xj≠1)
T , 1 < j < M . (4.45)

This concludes the derivation of the equations for backpropagation
in neural networks, and in summary, the four equations are

Equations for backpropagation

DM = ÒZML = ÒXML§ aÕM (ZM ) , (4.27)

Dj =
h�
W j+1

�T · Dj+1
i
§ aÕj(Zj) , (4.34)

ÒBjL = Dj , (4.38)

ˆL
ˆW j

= Dj · (Xj≠1)
T , 1 < j < M . (4.45)

Using these equations, one can compute all partial derivatives after a
single forward pass through the network for a single training example.
In practice, when one has a batch of several training examples, a forward
pass is made for each of them and the partial derivatives are averaged
and used to update the weights and biases. This is performed within an
outer loop generating batches from the entire set of training data and
yet another outer loop stepping through multiple epochs of training [92].
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4 . 2 . 4 COMMON CHALLENGES DURING TRAIN ING

While we dream of neural networks being mystical black boxes that
solve all our problems with a wave of a mathemagical5 wand, the
reality is far less enchanting. Instead of magic, we encounter a
series of puzzles, missteps, and challenges that demand patience,
precision, and an occasional urge to yell at our screens. From vanishing
gradients to overfitting, the training process is as much art as it
is science – albeit without the stage lights and applause. We will
go through the most common pitfalls and challenges when training
neural networks as well as how one might avoid them or overcome them.

Overfitting occurs when the neural network tries to learn the noise of
the training data instead of the features. The network will try to learn
the behaviour of the individual samples of the training data instead of
the overall trend in the data. This of course minimises the loss function
specifically for the training data, but any new data sample given to the
network will result in a large error. Overfitting typically occurs when
the training data set is too small and the network is too complex. In
this case, the network will have enough weights and biases to represent
the entire data set exactly, and given enough epochs during training, it
will do just that simply because it has the capacity to do so to further
minimise the loss function. There are various ways to accommodate
this problem depending on the task at hand [98].

One solution is to decrease the complexity of the network to have
fewer free parameters to train. One, however, needs to be careful that
the complexity is not decreased so much as to cause the problem of
underfitting where the network does not have the capacity to represent
the trends of the training data. This, however, results in poor predictive
ability for both the training data and the test data, so it is much easier
to spot.

Another solution is to increase the training dataset. However, this
may not always be feasible, either because generating more data is im-
practical or because the available pool of training data has already been
exhausted. For certain problems such as image recognition, it is possible
to artificially produce more training data through data augmentation.
This means that images in the training data set are repeated with alter-
ations such as rotations, translations, adjusted brightness, added noise,

5 This is not a typo.
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etc. This will increase the number of training data images and the net-
work will then be trained on multiple instances of the same object in
di�erent perspectives.

An overfitted neural network typically has weights with large values,
since small changes in input can lead to big changes in the output. To
avoid this, a third solution is to use regularisation. One type of regular-
isation introduces a penalty term in the loss function adding either the
absolute values of the weights (L1 regularisation) or the square of the
weights (L2 regularisation),

LL1(x) = L(x) + ⁄

X

i

|wi| (4.46)

LL2(x) = L(x) + ⁄

X

i

w
2
i , (4.47)

where ⁄ is a hyperparameter controlling how much the regularisation
term should influence the total loss function. Choosing one or the other
depends on the simplicity/complexity of the data as L2 is able to model
the inherent patterns in the training data for more complex data. Regu-
larisation can also be done without modifying the loss function by using
dropout instead. This deactivates a certain number of neurons within
a layer randomly with each forward pass during training. This ensures
more stability and robustness in the entire network since individual
neurons will have less e�ect on the final output.

A more simple solution to overfitting is early stopping where the
training process is halted just before overfitting begins. Usually, both
the total loss for the training data and the test data will decrease with
the epoch number until they start to flatten. At this point, the test
loss may start to increase again if the network is prone to overfitting,
and it is at this point early stopping should be done. To further
decrease the loss after this point, the training may be resumed with a
smaller learning rate in the optimiser or a di�erent optimiser altogether.

Vanishing gradients occur when the gradients of the loss function
with respect to the weights in the early layers become extremely small.
This leads to minimal updates in the weights of the early layers, result-
ing in very slow convergence during training. In order to understand the
vanishing gradients problem, we can take a look at the derivations in sec-
tion 4.2.3 and specifically the equations (4.27), (4.34), (4.38), and (4.45).
These tell us that the gradient of the loss function with respect to the
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weight matrix of the jth layer is a product of all the weight matrices and
the derivative of the activation functions from the subsequent layers. If
many weights are initialised with small values (less than 1), the product
of these weights becomes increasingly small for earlier layers. Further-
more, if the activation functions saturate (as is the case with sigmoid
functions), their derivatives also yield small values, compounding the
issue and further reducing the gradients in the earlier layers [99]. A
similar problem can arise for weights with large values known as the ex-
ploding gradients problem [92]. There are a few ways to mitigate these
kinds of problems.

The architecture of the network can greatly impact how profound
the problem of vanishing gradients is. By reducing the complexity of
the network (especially the number of layers), one will typically reduce
the problem as well, since fewer small numbers are multiplied when
computing gradients for the earliest layers. This, however, might im-
pact the performance as well since the capacity of the network is also
reduced. To circumvent this while still mitigating the problem of van-
ishing gradients, other types of network architecture might be used. In
particular, convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) are designed to have much better gradient flow and
propagation of information across the layers, which in turn reduces the
vanishing gradients problem. Another type of architecture that better
facilitates the flow of gradients is residual networks (ResNets) that in-
troduce a skip connection adding the output of one layer to the input
of the next. This type of architecture can make the training of deeper
models easier.

A better flow of gradients across layers can also be accomplished with
batch normalisation, where the input to each layer is normalised to zero
mean and unit variance. This in turn leads to faster convergence and it
also acts as a method of regularisation resulting in better performance.
Another benefit of batch normalisation is that it is robust to changes in
hyperparameters and improves stability during the training process.

Since the derivative of the activation function contributes to the
gradients, choosing an activation function without saturation can
prevent the vanishing gradients. Choosing ReLU as the activation
function ensures that gradients flow freely between layers, and
its computational simplicity makes it a popular choice for deep
learning. The function, however, has a constant value of zero for neg-
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ative inputs, which can lead to a whole separate problem (dying ReLU).

Dying ReLU refers to the persistent inactiveness of neurons with very
negative weighted inputs. Since the negative part of the ReLU func-
tion is constant, gradients cannot help the optimiser push the weights
to other values resulting in positive weighted input. As a result, neu-
rons with associated weights that always lead to negative values will
be inactive (dead state) and usually remain inactive through the entire
training process. It is not a problem to have neurons receiving a nega-
tive weighted input, since the entire non-linearity of the ReLU relies on
this, i.e., without the negative part, it would just be a linear activation
function e�ectively resulting in a single-layer network. The problem is if
several neurons end up in the dead state where they remain inactive for
all realistic input. Dying ReLU can occur if the learning rate is too high
since the weights are updated by subtracting the factor of change, i.e.,
the partial derivative of the loss with respect to the weight, multiplied
by the learning rate. If this update term is large, the new weight will
be very negative and drive the weighted input towards negative values.
Another reason for the problem could be having a large negative bias
since this is also a part of the weighted input entering the activation
function [100].

A solution to this could be to lower the learning rate and also initialise
positive biases for the neurons such that the weights do not get pushed
to negative values and the bias can help push the weighted input to
positive values. Another solution is to slightly modify the ReLU func-
tion to introduce gradients. An example is the Leaky ReLU function
(see section 4.2.2) which substitutes the constant function for negative
inputs with a function with a tiny positive slope. This will not signif-
icantly impact the overall behaviour of the function since a negative
input still results in a near-zero value, but the optimiser can now have
access to information about the gradients in order to help adjust the
weights and avoid the problem of dying ReLU completely.





Part II

EMULATION OF COSMOLOGY

The di�erence between us and a computer is that, the com-
puter is blindingly stupid, but it is capable of being stupid
many, many million times a second.

Douglas Adams





5
THE CONNECT FRAMEWORK

As cosmological models become more advanced, the computational re-
quirements for their analysis increase exponentially. This challenge be-
came especially evident when dealing with more complex models of
decaying dark matter, which highlighted the limitations of conventional
parameter inference in cosmology. The need for faster computations in
these models became urgent, propelling my PhD in a completely new
direction: finding a solution to the problem of slow model computation.
Initially, our goal was simply to leverage the codes that were available
at the time, but these were not easily accessible for public use and did
not fully accommodate our needs. This led me to develop what would
later become the neural network framework connect.

This chapter presents the following release paper of the connect
code in its entirety:

• Andreas Nygaard, Emil Brinch Holm, Steen Hannestad, and
Thomas Tram. “CONNECT: a neural network based framework
for emulating cosmological observables and cosmological parame-
ter inference.” In: JCAP 05 (2023), p. 025. doi: 10.1088/1475-
7516/2023/05/025. arXiv: 2205.15726 [astro-ph.IM].

The paper delves into the key considerations that guided the develop-
ment of the code, as well as the active learning algorithm that I designed
to enable more e�cient training. This algorithm serves as the core of
the connect framework, distinguishing it from other neural network-
based tools used for cosmological parameter inference. Its ability to
intelligently select data for training has made it a valuable resource for
a variety of applications, as we will explore in the chapters that follow.

Developing connect has been an exciting and rewarding experience.
Over time, the framework has grown into a highly adaptable tool for
cosmological emulation. However, as mentioned in the accompanying
paper, it remains a work in progress. Given the rapidly advancing field
of machine learning, the methods behind connect will likely continue
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to evolve, and it is my hope that it will remain a valuable asset in
cosmological research for many years to come.

Beginning of reference [2]

CONNECT: A neural network based frame-
work for emulating cosmological observables
and cosmological parameter inference

Andreas Nygaarda, Emil Brinch Holma, Steen Hannestada,
Thomas Trama

aDepartment of Physics and Astronomy, Aarhus University, DK-8000
Aarhus C, Denmark

Abstract. Bayesian parameter inference is an essential tool in mod-
ern cosmology, and typically requires the calculation of 105–106 the-
oretical models for each inference of model parameters for a given
dataset combination. Computing these models by solving the linearised
Einstein–Boltzmann system usually takes tens of CPU core-seconds per
model, making the entire process very computationally expensive.

In this paper we present connect, a neural network framework em-
ulating class computations as an easy-to-use plug-in for the popular
sampler MontePython. connect uses an iteratively trained neural
network which emulates the observables usually computed by class.
The training data is generated using class, but using a novel algo-
rithm for generating favourable points in parameter space for training
data, the required number of class-evaluations can be reduced by two
orders of magnitude compared to a traditional inference run. Once
connect has been trained for a given model, no additional training is
required for di�erent dataset combinations, making connect many or-
ders of magnitude faster than class (and making the inference process
entirely dominated by the speed of the likelihood calculation).

For the models investigated in this paper we find that cosmological
parameter inference run with connect produces posteriors which di�er
from the posteriors derived using class by typically less than 0.01–
0.1 standard deviations for all parameters. We also stress that the
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training data can be produced in parallel, making e�cient use of all
available compute resources. The connect code is publicly available
for download on GitHub �.

5 . 1 INTRODUCTION

For the past two decades the method of choice for cosmological param-
eter estimation has been based on stochastic optimisation techniques,
typically Markov-chain Monte Carlo (MCMC) methods. These meth-
ods have the advantage that they are very robust and do not require
derivatives of the cost (likelihood) function. They also easily scale to
large numbers of parameters which allows for a simple treatment of
nuisance parameters. However, a major disadvantage is that a single
calculation of the cost function in cosmology can be very expensive be-
cause it requires a full solution of the Einstein–Boltzmann equations
of linear perturbation theory (and perhaps even a calculation of non-
linear corrections). Such a computation typically takes tens of seconds
on a single CPU core, and does not parallelise well beyond 10 cores.
A fully converged MCMC run, typically requires between 105 and 106

solutions of the Einstein–Boltzmann solver, so the total computation
time can easily reach days or weeks, in particular for more complex cos-
mological models. Furthermore, a new MCMC run must be performed
either when a new cosmological model is required or when new data is
added. In the latter case, which is common for modern application, the
complete analysis with several datasets can be prohibitively expensive
numerically.

The purpose of the present paper is to remedy this through
a new framework for emulating cosmological observables based on
machine learning via neural networks (NN) which we call con-
nect (Cosmological Neural Network Emulator of Class using
TensorFlow). We demonstrate, via a new plug-in written for the
publicly available MontePython MCMC code [63, 101] that we can
reduce the time required for a full MCMC run to hours rather than
days or weeks. A similar plug-in for the code Cobaya [102] has also
been implemented. connect assumes a cosmological model but is
independent of the targeted dataset, and separates itself from other
Einstein–Boltzmann emulators by allowing for user-friendly plug-and-
play generation of a neural network emulator for any cosmology that
the user may want to investigate, the only requirement being a work-

https://github.com/AarhusCosmology/connect_public
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ing class implementation. With a simple Boolean input argument
supplied, we have modified MontePython to automatically generate
training data with class, train a neural network emulator to su�cient
precision and conduct the MCMC analysis using this emulator, with a
very significant decrease in total computation time relative to simply
running an MCMC analysis directly with class.

The idea of using machine learning and specifically neural networks
to speed up computations in cosmology has existed for several years.
Much focus has been on emulating N -body codes (e.g. [103]) due to
them being massively time consuming. Since the training data is expen-
sive to generate, the field of emulating N -body codes is markedly data
starved. Accordingly, the machine learning tools usually employed in
that context include Gaussian processes [104, 105] and polynomial chaos
expansion coupled with principal component analysis [103]. However,
when large data samples are available, and especially when the dimen-
sionality is large, neural networks are often superior to other supervised
learning strategies (as evident, for example, in the recent dominance of
neural networks in the ImageNet Large Scale Visual Recognition Chal-
lenge [106]), and are therefore the obvious choice of strategy for emu-
lating Einstein–Boltzmann codes which are many orders of magnitude
faster at generating data than N -body codes.

Examples of use of neural networks in emulation of Einstein–
Boltzmann codes date back to the early CosmoNet [107, 108], and
the approach has since been revisited on numerous occasions with vari-
ous target variables. CLASSNET [109, 110] is embedded in class and
learns the source functions, reducing the time required to solve linear
perturbation equations. Ref. [111] targets LSS angular power spectra,
whereas ref. [112] learns the linear matter power spectrum, both using
neural networks. More recently, CosmoPower [113] emulates class
computations of CMB spectra with temperature, polarisation and lens-
ing anisotropies, as well as the matter power spectrum. connect, con-
trary to these works, emulates a wide range of customisable outputs:
The user simply defines the desired class output variables in an input
file, and the connect framework automatically generates a network
emulating these.

Although Einstein–Boltzmann solvers generate data much faster than
their N -body siblings, the total time required for the combined process
of gathering data, training a network from it and performing parameter
inference with the network, is still dominated by the data generation.
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To optimise the emulation scheme, it is therefore most vital to improve
on the data gathering method, e.g. by optimising the amount of in-
formation extracted from each Einstein–Boltzmann computation or by
generating training data in the most important points of the cosmo-
logical parameter space. These topics fall under the machine learning
field of active learning [114–116]. Most early active learning algorithms
focused on selecting new data at regions of large uncertainty of the
emulator in so-called uncertainty sampling. Individual active learning
algorithms in uncertainty sampling typically di�er on how they approx-
imate the uncertainty of the emulator. Query-by-committee [115] algo-
rithms estimate the uncertainty as the spread in predictions from a set
of learners trained on the currently available dataset, whereas expected
model change approaches [115], such as the expected gradient length al-
gorithm [117], select new data that optimise an approximate expected
improvement of the emulator; e.g. where the new training gradient has
the largest magnitude in the case of expected gradient length sampling.
In the case of a fully connected neural network emulator, however, a
measure of network uncertainty is not readily available. Neural net-
work uncertainties can be naturally estimated using architectures such
as Monte Carlo dropout [118] or Bayesian neural networks [119], but
given the scope of the paper, we leave such endeavours for future inves-
tigation.

Furthermore, an important distinction between the classical active
learning applications and the one at hand is that in addition to min-
imising the global emulator uncertainty, we are especially interested
in minimising the error in the regions of parameter space that corre-
spond to cosmologies of large likelihood. This duality, i.e. selecting
data where (i) the likelihood value is large and (ii) the current emu-
lator uncertainty is large, has been explored previously in the context
of cosmological inference. Particular examples of such active learning
strategies in cosmology include ref. [120], in which a Gaussian process
is used to emulate the likelihood function, from which new data can
be selected based on their weighting according to some balance of the
Gaussian process uncertainty and its current estimate of the likelihood
at the proposed points. A similar approach was adopted in ref. [121] in
an iterative fashion, as well as in ref. [122], where it was found that the
exploratory behaviour is increasingly important in many-dimensional
problems. However, with Einstein–Boltzmann emulators, the overhead
introduced by the Gaussian processes in the Bayesian optimisation may
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cancel this gain in e�ciency since Gaussian processes are known to scale
disadvantageously with the size of the training data [123]. Additionally,
batch acquisition can be non-trivial, and the optimization of the acqui-
sition function itself contributes considerable overhead, rendering such
more advanced methods of active learning useful when the generation
of data is slow, e.g. for N-body simulations. Indeed, it was shown
in [122] that the overhead involved in these acquisition methods often
becomes the computational bottleneck when emulating the relatively
fast Einstein–Boltzmann emulators.

In this work, we present an iterative data generating procedure that
with little overhead combines the focus of data generation around re-
gions of large likelihood while still being spread to reduce uncertainty
far from the maximum likelihood. Our algorithm produces parameter
space samples with an MCMC chain run by a neural network iteratively
trained on the same points, including a method of protecting against
spuriously oversampled regions. With this, we find vastly increased
emulator accuracy relative to a standard Latin hypercube sampling of
training data. We developed the framework with the notoriously dif-
ficult posterior of decaying cold dark matter [1] as a reference, and
tested it blindly on a LCDM model with variable neutrino mass and
degeneracy parameter, on both of which it performs excellently.

This paper is structured as follows. In section 5.2 we specify the
design of the neural network architecture employed in connect, and in
section 5.3 we describe the novel iterative algorithm for placing training
data at advantageous points in the parameter space. In section 5.4
we describe the use of connect through MontePython and present
resulting MCMC analyses, using connect, for the decaying cold dark
matter and massive neutrino cosmological models. Finally, we discuss
and conclude on our findings in section 5.5.

5 . 2 NEURAL NETWORK DES IGN

The method used for the emulation is a fully connected deep neural net-
work consisting of an input layer, multiple hidden layers, and an output
layer (see e.g. [124] for a recent overview). The input layer consists of
the cosmological parameters from which we would like to extract an
output, i.e. any numeric parameter that the Einstein–Boltzmann solver
code class takes as input [124]. The hidden layers have a much larger
dimension of several hundreds of nodes, in order to create enough train-
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able weights for the network to find the correct behaviour of the class
computations. The output layer consists of all the specified spectra and
output parameters one wishes to emulate — this being any output that
class can compute (CMB spectra, matter power spectra, background
functions, thermodynamical parameters, and derived parameters).

The first step is to gather training data for the network which requires
a method for sampling in the space of cosmological input parameters.
The construction of this method will be further discussed in section 5.3.
When the sample of input values has been constructed, we can use class
to calculate the specified output values for each point in the sampled
data. This is then combined to a single output array for each point
while the cosmological input parameters are put in a single input array
for each point. Together, the set of input arrays and output arrays
constitute our training data.

Using the TensorFlow framework [125] we can now train the network
on the training data for a specified number of cycles, where a cycle
refers to an update of the network weights. Each network used for our
results has been trained for 300 cycles1 and with batch-sizes of 512. The
loss function is then minimised using a specified optimisation algorithm
(We have used the ADAM optimiser [126] for this work and as the
default in connect) which slightly tweaks the weights of the network
while propagating backwards. The Network is then ready for the next
cycle where the whole procedure is repeated in order for the network to
perform better with each cycle.

5 . 2 . 1 NETWORK ARCHITECTURE

An Einstein–Boltzmann solver can be seen as a function mapping the
cosmological parameters into a set of observables such as the CMB
anisotropy coe�cients or the linear matter power spectrum. Since this
mapping can be very general, the most conservative neural network
structure to employ is a fully connected, feed-forward, deep neural net-
work [124]2. This involves several hidden layers where each node in a
layer is connected to each node in the next layer. For all results in this

1 Except for a single massive neutrino model trained on a Latin hypercube consisting
of 106 points used solely for comparison in figure 5.13. This has only trained for
100 cycles due to the large amount of data causing the optimiser to diverge, but the
accuracy of the network stagnates quickly so there would be little to no gain with
more cycles anyway.

2 Other Einstein–Boltzmann emulators have used di�erent architectures. For example,
ref. [110] used convolutional layers [124]. However, such choices are always motivated
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paper we use 6 hidden layers with 512 nodes in each, inspired by the
architecture in ref. [113]. Too few nodes and layers restrict the ability
of the network to emulate the desired computation, and too many both
make it prone to over-fitting [124] and require larger datasets. We find
that our chosen values evade both of these concerns, and by varying
these network parameters slightly, we find only modest changes in the
network performance. We therefore leave a more thorough investigation
of the optimal network architecture for future work. However, one soft
requirement is that the evaluation time of the connect architecture
must not exceed the evaluation time of typical likelihood codes such
as Planck [127] or Planck lite [128]. We have conducted rough bench-
marking of the likelihood codes and the connect evaluation time, and
find that at around 12 layers, the evaluation time of connect becomes
greater than the evaluation time of Planck lite, giving an approximate
upper bound on the architecture complexity. Furthermore, since con-
nect allows the user to choose the outputs to emulate, one should keep
in mind that the ideal architecture will vary with the size of the output,
with larger outputs naturally requiring a larger network complexity. For
example, Einstein–Boltzmann solvers such as class do not evaluate C¸

coe�cients for each ¸, but rather at a reduced set of approximately
102

¸-values from which the full sets of C¸ coe�cients are constructed
by interpolation. This significantly reduces the output dimension and
we have consequently chosen the set of ¸-values directly computed by
class for the output layer.

5 . 2 . 2 CHOOS ING A LOSS FUNCTION

When training a neural network, one always has to make choices re-
garding the optimisation of the network. First of all, we need a way
of quantifying how well the output from the network fits the desired
output from the training data – the loss function [124]. A simple choice
for a loss function would be the widely-used mean squared error (MSE)
function,

LMSE(x, y) =
1
n

nX

i=1
(xi ≠ yi)

2 , (5.1)

by some properties of the underlying physics, and since connect emulates customiz-
able class outputs, we cannot directly make such assumptions.
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Figure 5.1: CMB spectra as calculated by class along with two neural
network models with di�erent loss functions. The di�erence is not really visible
in the spectra, so the errors are included as well. Due to some of the spectra
values being close to zero, a relative error would be misleading. The absolute
errors are therefore scaled by the rms-values of the spectra.

where x is the output from the network and y is the output from the
training data. This loss function ensures that the network performs
equally well on every output node and is thus the apparent choice if we
are to remain agnostic about our network.

There are, however, various situations where this approach is not the
most optimal, and the CMB spectra are examples hereof. Measurement
errors on the CMB temperature and polarisation power spectra are a
combination of cosmic (sample) variance, noise, and finite beam width
(see e.g. [129]). Modern CMB probes, such as Planck, in general provide
spectra which are cosmic variance limited (except for B-mode polarisa-
tion) e�ectively out to the maximum ¸-value measurable with the given
beam width, and can therefore be reasonably approximated by assum-
ing cosmic variance out to some maximum ¸ beyond which the error
goes to infinity. Using this observation as a guide we therefore modify
equation (5.1) with ¸-dependent coe�cients,

LCV(x, y) =
1
n

nX

i=1

2¸i + 1
2 (xi ≠ yi)

2 , (5.2)

Figure 5.1 shows the CMB spectra of a LCDM model as calculated
by class and two neural network models with di�erent loss functions,
LMSE and LCV. The figure also includes the errors between the spectra
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Figure 5.2: Percentiles of errors in the CMB spectra of neural network models
with di�erent loss functions when using a test dataset of 20,000 points from a
high-temperature MCMC sampling of the DCDM posterior. Both the 1‡ and
2‡ percentiles are included for each model.

from the neural network models and class. The errors are calculated
as the absolute di�erence scaled by the rms-values of the spectra. This
is due to the fact that a normal relative error is misleading when the
values of the spectra are close to zero, since the error would be very
large even though the discrepancy is rather small.

Evaluating the loss functions on a single cosmological model may
misrepresent the performances on a larger region of cosmological pa-
rameter space. We therefore use the neural network models on a set
of data from a high-temperature MCMC sampling containing 20,000
points and calculate the error in the same way. Figure 5.2 shows the 1‡
and 2‡ percentiles of this set of errors for both loss functions. It is clear
from figure 5.2 that the cosmic variance loss function has the desired
e�ect of improving the accuracy at high ¸s at the cost of accuracy at low
¸s. This in turn improves results of parameter inference compared to
using the mean squared error loss function. When including additional
output, such as derived parameters, we need to use a combination of
both loss functions, but we also need to assign an importance to all
non-CMB output similar to that of the highest ¸-mode, as to not get a
low accuracy on these.

5 . 2 . 3 CHOOS ING AN ACTIVATION FUNCTION

Another choice we need to make is the choice of an activation func-
tion [124]. The traditional choice is the Rectified Linear Unit (ReLU)
function [130]. However, the main drawback of ReLU is that the train-
ing might become more di�cult due to the derivative being exactly zero
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Figure 5.3: Percentiles of errors in the CMB spectra of neural network models
with di�erent activation functions when using a test dataset of 20,000 points
from a high-temperature MCMC sampling of the DCDM posterior. Both
the 1‡ and 2‡ percentiles are included for each model. “Alsing” refers to
equation (5.3) as presented in ref. [131].

for negative input. For our application, we found that the following pa-
rameterised ReLU with a smoothing between the positive and negative
parts, as suggested in ref. [131], works well. There are two free param-
eters of this activation function, one for the slope of the negative part
and one for the smoothing, and we allow these to be trained alongside
the weights of the network. We can furthermore assign di�erent pa-
rameters for each node in a layer which will then be optimised during
training. This leads to the form of the activation function as presented
in ref. [131],

f (x) =

✓
g +

⇣
1 + e≠b§x

⌘≠1
§ (1≠ g)

◆
§ x , (5.3)

where the parameters b and g control the smoothing and slope of the
negative part, respectively, and the § represents elementwise multiplica-
tion. From figure 5.3, it is evident that this activation function performs
better than the simple ReLU activation function.

5 . 2 . 4 NORMAL ISAT ION OF INPUTS AND OUTPUTS

When using an artificial neural network it is beneficial, and often nec-
essary, to consider scaling of the training data [132]. This is especially
true in our case, since the input nodes and output nodes vary with
several orders of magnitude. If we were to not consider this at all, the
loss function would only have significant contributions from the larger
values, while small numbers, such as the C¸s, would have a vanishing
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impact on the total loss. We are therefore required to address this prob-
lem in some manner. There are several ways to deal with this and they
include the following:

1. Min-Max scaling, where data belonging to each node in the
input (output) layer is transformed to the same interval, e.g. [0, 1],
using the minimal and maximal values of the data within the node:
Xnew = (X ≠Xmin)/(Xmax ≠Xmin).

2. Logarithmic scaling, where the data is transformed to logarith-
mic space in order for values di�ering by several orders of mag-
nitude to lie within the same order of magnitude (or few apart).
Since X1/X2 = exp[log(X1)≠ log(X2)], this also ensures that op-
timisation of absolute loss in logarithmic space is equivalent to an
actual optimisation of relative loss, meaning that larger orders of
magnitude will not be favoured above smaller orders of magnitude.

3. Standardisation, where data belonging to each node in the in-
put layer (or the output layer) is transformed to a normal distri-
bution with zero mean (µ = 0) and a variance of unity (Var = 1):
Xnew = (X ≠ µ)/

Ô
Var.

The input arrays in the training data are automatically nor-
malised with standardisation using TensorFlow’s own built-in
preprocessing.Normalization routine based on a usual batch
normalisation scheme [132]. The means and variances are stored as
weights in the input layer of the model and we thus do not need to do
anything explicit to the inputs. It is not quite as easy with the output
arrays, since no similar routine is available for the output layer. We
instead have to normalise the output arrays manually, and we have
therefore implemented all of the above three methods in connect.

All three methods of normalisation yield good results when compared
to simply multiplying all spectra with a constant factor of 1010, but the
accuracy is much better when using min-max scaling or standardisation.
This is because all nodes in the output layer have the same span and
the network treats them similarly. When using logarithmic scaling, the
order of magnitude is still very similar, but there is a clear di�erence
between the C¸s and other kinds of output, such as derived parameters,
since the C¸s will have values around or lower than ≠20 while other
parameters will have values closer to or above zero. This leads to a dif-
ference in how the output nodes are viewed and treated by the network,
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Figure 5.4: Percentiles of errors in the CMB spectra of neural network models
with di�erent normalisation methods when using a test dataset of 20,000 points
from a high-temperature MCMC sampling of the DCDM posterior. Both the
1‡ and 2‡ percentiles are included for each model.

and it is thus harder to achieve convergence. In our implementation
of logarithmic scaling, we found that the performance can be further
increased by taking the logarithm twice (after a shift of all the data
to positive values) since the di�erence in orders of magnitude for C¸s
and derived parameters is quite large. Standardisation yields a slightly
better result than min-max scaling, as apparent from figure 5.4, and so
it has been chosen as the default normalisation method. All results in
this paper have been produced with standardisation as the normalisa-
tion method except for the comparisons between di�erent methods of
normalisation in this section.

5 . 3 SAMPL ING OF TRAIN ING DATA

The training data can be sampled in various ways with di�erent methods
having di�erent strengths and weaknesses. The most agnostic way of
sampling the parameter space would be using a grid-based method. To
get a good resolution these can, however, be very costly and we end up
with many points that yield almost identical output since many of them
only di�er in a single parameter. To circumvent this, we can use Latin
hypercube sampling, where no two models share any parameter values.
This is much more e�cient and proves su�cient for the training of the
neural network. This way of sampling still yields a uniform distribution
of points in the parameter space, so the trained network will be able to
emulate the output for all models in the parameter space (within the
boundaries of the Latin hypercube) with similar accuracy.
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For a large Latin hypercube containing all reasonable models, it is,
however, rare that we would ever need to use the network on the outer
parts of the hypercube. This is due to the fact that most models near the
edges (and especially the corners) have very low likelihoods since they
are very far from the best-fit points of most datasets. If we disregard all
such unlikely models, a better way of sampling would be by mimicking
the shape of the actual posterior distribution. With high dimensionality
in the parameter space, this proves much more e�cient than using Latin
hypercube sampling, since only a small fraction of the models are of
actual use in the latter. A way of illustrating this e�ect is by imagining
a simple hyperspherical posterior with radius R centred around the
best-fit point. The ratio of the volume of the hypersphere to that of a
hypercube with side length 2R is given by

rn =
V

sphere
n

V cube
n

=
fi
n/2

2n G
�
n

2 + 1
� , (5.4)

and in high-dimensional space this decreases rapidly. With just 3 pa-
rameters, the corners of the hypercube makes up almost half of the
volume, and with 9 parameters, less than a percent of the volume is
within the hypersphere. By only focussing on models within such a
hypersphere, we could utilise our resources much better and increase
the performance of the network on all the relevant models of interest.
Actual posteriors typically have a much more complicated shape than
a hypersphere, however, the argument still holds due to many of the
cosmological parameters having a vanishing likelihood only a few stan-
dard deviations away from the best-fit point. We cannot simply expect
that a hyperspherical sampling will be representative of the posterior
distribution. We thus need a way of sampling training data from the
actual posterior distribution instead. We therefore propose to sample
the training data using an MCMC method with a high sampling tem-
perature. It seems a little strange to use an MCMC method to create
the training data for a neural network that is to be used in an MCMC
analysis, but the idea is that we do not need anywhere near as many
data points for the training data as we do for the actual MCMC anal-
ysis. A high-temperature MCMC sampling running for a few hours is
su�cient to obtain the same (or better) accuracy on the relevant models
as one would get from Latin hypercube sampling with 105–106 points.
As noted in ref. [133], we thus obtain a set of training data from the
exact region of the parameter space where emulation is relevant instead
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of having the majority of the training data unrealistically far away from
the best-fit point.

In this paper, we present results obtained with the default connect
temperature of T = 5. Since the temperature alters the likelihood L
as L æ L1/T , a temperature of T = 5 corresponds to increasing the
standard deviation of a Gaussian likelihood by a factor 5, to the e�ect
that the generated training data mainly lies inside the 5‡ contour of the
posterior. However, this is a free input parameter and may be adjusted
if the user desires higher accuracy further away from the posterior mode.

5 . 3 . 1 ITERATIVE SAMPL ING

We can even improve on this and make the sampling even more e�cient.
We can exploit the fact that we only need to sample from something
roughly similar to the posterior distribution and not the actual one, due
to the high sampling temperature and the neural networks ability to
interpolate in a well-sampled area. We therefore do not need to search
the parameter space with the precision of class resulting in many slow
calculations of the likelihood. With a typical acceptance rate of 0.3 we
are wasting a lot of computation time when calculating the likelihood of
rejected steps. A way around this is to use a neural network trained with
only a small number of Latin hypercube points (≥ 104) — enough to
give a decent, but not great, accuracy. We then use this neural network
model to calculate likelihoods during the MCMC sampling much faster
and sample new points for the training data. We then only need to
use class to calculate the output-part of this new training data, which
means that we e�ectively skip the class computations of all the rejected
steps. Since the neural network model had a relatively low accuracy,
we have only gained a rough sample around the posterior distribution,
but new models trained with this new training data shows a major
improvement. We can even repeat the process starting from this new
model, and the resulting models improve for each iteration. Using this
method we can thus get rid of a huge part of the expensive class
computations only resulting in rejected steps. We could include the
initial Latin hypercube data in the total dataset, but by doing so we
lower the accuracy of the neural network model in the relevant parts of
the parameter space. This is due to the fact that the network contains
a limited set of weights, and by forcing it to learn the behaviour in the
outermost regions of the parameter space, we inhibit the training in the
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Figure 5.5: Flowchart of the iterative sampling algorithm.

more relevant regions. It is thus advantageous to exclude the initial
training-data even though the class computations have already been
done. An illustrative flowchart of this sampling algorithm is shown in
figure 5.5. During the completion of this paper a few similar approaches
have been published [134–136], which further increases the confidence
in this type of sampling.

When using this way of sampling, we are interested in the least
amount of points possible with the best representation of the poste-
rior for a good accuracy. We are therefore not interested in using all
of the points from the high-temperature MCMC samplings, since the
burn-in period yields unfavourable points to use as training data. In
order to get a representative set of training data, we therefore sample
longer MCMC chains and keep only the last N points for the training
data. The question now remains how to determine when each high-
temperature MCMC sampling should end as well as when the accu-
racy of an iteration is acceptable. We propose similar answers to the
two questions, namely to stop when the variance falls below a certain
threshold. For the individual high-temperature MCMC samplings it is
the variance between the chains, and for the iterations it is the variance
between the kept points from two consecutive iterations.
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5 . 3 . 2 REDUCTION OF OVER -DENS IT IES IN SAMPLE
POINTS

We could use all of the kept points from each MCMC run, but we
would then get a lot of similar points in our total dataset, since each
iteration roughly samples from the same distribution. It would be
beneficial to have a way of determining which points we can safely
discard, as to not waste computational power increasing our dataset
where it is already well sampled. A simple, yet e�ective, way of doing
this is the following:

Pi = new points from current iteration
Pi≠1 = points in the data set from previous iterations
for p in Pi do

x = nearest point of p in Pi≠1
dmin = distance between p and x

Di≠1 = array of distances between x and the
n nearest neighbours of x in Pi≠1

Di = array of distances between p and the
n nearest neighbours of p in Pi

if dmin > average(Di≠1) + 2 · std(Di≠1) then
p is accepted

else if average(Di) < average(Di≠1)≠ 2 · std(Di≠1) then
p is accepted

Add all accepted points to the data set

The conditions of the if-statements might seem arbitrary at first, but
we found that a tolerance of 2 standard deviations gave the most con-
sistent results. There are several reasons why oversampling should be
avoided, and computational waste is only one of them. Another reason
is that an oversampling of certain regions leads to a bias in the train-
ing, since these regions are given more weight in the calculation of the
total loss. When repeating the sampling for several iterations, the over-
sampled regions may di�er between two iterations and thus result in
trained neural networks with di�erent biases. These will in turn lead to
di�erent samples, and the convergence in the data between two consec-
utive iterations will be immensely di�cult and require a large number
of iterations.
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ing cold dark matter cosmological model in the (Êini
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data after filtering including 1‡ and 2‡ contours. Note how the best-fit point
of iteration i = 1 is several standard deviations away from the subsequent
best-fit point. Including the i = 1 data in the final training set would degrade
the performance of the network as argued in the text.

Next, in figure 5.6 we provide an actual demonstration of how the
iterative procedure works for the case of a decaying cold dark matter
(DCDM) model. This model is described by a number of cosmological
parameters: Ê

ini
dcdm and Gdcdm (see e.g. ref. [1] for details on the model

parameters). The figure shows the training data acquired in each iter-
ation in the 2-dimensional (Êini

dcdm, log10(Gdcdm)) parameter space, and
only the accepted points using the aforementioned algorithm are shown
in color.

From the di�erent iterations of figure 5.6 it is clear that we might
need to further discard some of the points in our dataset. The points
from the first iteration, as sampled by the neural network model trained
on the initial Latin hypercube data, often have little to no overlap with
those from the other iterations, and including them in the dataset thus
leads to a worse accuracy in the relevant part of the parameter space,
since the network has to focus some of the training on an irrelevant
region. It would therefore be beneficial to remove the data from the first
iteration altogether like we removed the initial Latin hypercube data.
This way of discarding data is more wasteful than the filtration of points
from the MCMC samplings, since we again are throwing away already
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computed class models. In order to combat this waste of resources,
we decrease the number of points sampled by the initial neural network
model. For some cosmological models the first sample is not far from
the consecutive samples, and in those cases we could keep the data from
the first iteration without lowering the accuracy. We have therefore
included the option of keeping the data from the first iteration if one
wishes to do so. When looking at figure 5.6, one could make an argument
for keeping the first iteration (or, though wasteful, throwing away the
second as well), but we discard it to be on the safe side. The first
iteration contains 5,000 class computations and the maximal amount
of new points from each iteration is 20,000. The final dataset contains
19,999 points from i = 2 (one class computation returned an error and
was excluded), 7,475 points from i = 3, 4,781 points from i = 4, and
2,415 points from i = 5. We thus see that the amount of points taken
from each iteration decreases due to convergence, so less and less class
computations need to be performed.

5 . 4 INTEGRATION WITH MONTEPYTHON

In order to gain any real benefits of a neural network emulating cosmo-
logical observables, we need to be able to use the network instead of
an Einstein–Boltzmann solver code like class in an MCMC analysis.
We have therefore made a module for connect as a plug-in for the
popular MCMC code MontePython. Using this plug-in along with
the Planck lite likelihood [128], one can reach speedups of 2-3 orders
of magnitude. This means that a reasonable inference can be done in
mere minutes.

5 . 4 . 1 CONS IDERATIONS AND USAGE

Now that the computation speed of CMB spectra is increased signifi-
cantly, it no longer dominates the computation time of each step in an
MCMC chain. This means that the computation time of the likelihood
dominates the computation time when using the connect plug-in, and
this means that we are limited to only certain likelihoods if we want the
greatest speedups. When using the full Planck clik likelihood, we only
see speedups of less than one order of magnitude using the connect
plug-in, and this is because of the vast number of nuisance parameters
making the likelihood computation slow. To really see the benefits of
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the plug-in, we need to use the much faster Planck lite likelihood which
is marginalised over the nuisance parameters leaving only a single one
for the likelihood computation. This leads to speedups of several orders
of magnitude.

A few things in the source code of MontePython are specific to
class and for the sake of usability we did not want to alter anything
in the source code. The solution was therefore to make our new plug-in
inherit from the cython wrapper of class, classy, and trick Mon-
tePython into believing that our connect module is class. This
way, a user will not have to alter any code, and any version of Mon-
tePython supporting class can be used. One simply has to set the
path of the cosmological module to that of the connect plug-in instead
of a class installation and add the name of a trained connect model
to the data.cosmo_arguments dictionary in the parameter file.

Since the plug-in inherits from the classy wrapper, it will automat-
ically use class to compute any derived parameter that was not emu-
lated by connect. Since the background calculation of class is at the
same order of magnitude of computation time as a connect emulation,
we can just let class take care of any derived parameter that is only
dependent of the background module of class. It is, however, a good
idea to include any other derived parameter, needed for the MCMC
analysis, in the emulation output, since all other modules of class are
slower and this would impact the computation time significantly.

5 . 4 . 2 INFERENCE WITH PLANCK L ITE

Using the plug-in for MontePython, we have first sampled the param-
eter space of the DCDM model which we used to test and validate the
training algorithm. In figure 5.7 we show the posteriors resulting from
both a standard class-based MCMC run with approximately 5◊105 ac-
cepted chain elements (≥ 5, 000 CPU core-hours) and a connect-based
run with approximately the same number of chain elements (≥ 10 CPU
core-hours). As can be clearly seen the agreement is excellent! The
di�erence on both means and standard deviations is around 0.01–0.1
standard deviations for all parameters. Figure 5.8 shows the connect-
based runs using data from iterations 1, 3 and 5 for a subset of the
cosmological parameters (Êini

dcdm, Gdcdm and H0), and we can clearly see
the progress through the iterations. The first iteration does not lead
to a particularly good model, but it manages to find a rough area in
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Figure 5.7: 1D and 2D posteriors for the DCDM model resulting from a
standard class-based run (black) and connect (red).

which to sample during the following iterations. This improves until
the iterations are halted by convergence of the data. When compar-
ing the results of the iterative sampling method to the performance of
Latin hypercube sampled NN models in figure 5.9, we see that not even
106 points (individual class computations) are enough for the Latin
hypercube sampling to match the results of the iterative sampling, and
certainly not a Latin hypercube with as few points as in the dataset
from the iterative sampling (34,670 class computations). The Latin
hypercubes are of course sampled logarithmically in the Gdcdm parame-
ter as in the iterative case, but this does not help much, the reason being
the finite size of the network having to accommodate a huge amount of
points in the parameter space that are very far from the region of inter-
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est. A network with many more nodes and hidden layers could perhaps
be trained to behave nicely in the entire span of the Latin hypercube.

Next, we have used the exact same setup for a completely di�erent
massive neutrino model, described by parameters mncdm and degncdm.
In figure 5.10 we show the iterative acquisition of training data in the
mass-degeneracy plane. As can clearly be seen, this model is signifi-
cantly easier for the algorithm and converges in just 3 iterations because
the likelihood function is significantly more Gaussian than that of the
DCDM model. The first iteration again contains 5,000 class compu-
tations and the maximal amount of new points from each iteration is
now 30,000 (see section 5.5 for a discussion hereof). The final dataset
contains 30,000 points from i = 2 and 8,959 points from i = 3. We
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then perform the same comparison between MCMC runs with class
and connect as in the DCDM case, and the result is shown in fig-
ure 5.11. Clearly, in this case the agreement is even better than in the
DCDM case, with means and confidence regions di�ering by around or
less than 10≠2 standard deviations for all parameters except H0, which
di�ers by around 10≠1.

Figure 5.12 shows the results of MCMC runs based on the data from
the three iterations for a subset of the cosmological parameters (mncdm,
degncdm and H0), and we clearly see that convergence is very quickly
achieved since the second iteration is very close to the third. This is
quite remarkable due to the fact that the first iteration samples no train-
ing data in the immediate vicinity of the best-fit point, so the second
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iteration being that good really demonstrates how well the sampling
works when the likelihood function is simpler and more Gaussian. Fig-
ure 5.13 shows how the results of MCMC runs using models trained on
Latin hypercubes of di�erent sizes stack up against the results from the
last iteration. It is apparent that a Latin hypercube of the same size as
the dataset from the iterative process (38,959 points) in no way comes
even remotely close to the performance of the last iteration. We also
see that a number of points larger than 106 is needed to even come close
to the same result as the iterative process, but a much larger dataset
would require a larger network architecture as well to perform reason-
able, and this would raise the evaluation time for each model and is
thus not a viable solution — not to mention the huge number of class
computations that would make the whole idea of emulation obsolete.
The larger Latin hypercube seems reasonable for the parameters with
a Gaussian posterior, but in the case of a parameter whose likelihood
function increases towards a boundary of the prior, we again conclude
that the Latin hypercube does not have the ability to represent the
cosmological models close to the boundary.

Lastly, we note that models trained by connect are also fairly ac-
curate beyond 2‡. Figure 5.14 shows the contours of posteriors in the
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Figure 5.11: 1D and 2D posteriors for the massive neutrino model resulting
from a standard class-based run (black) and connect (red).

massive neutrino model as estimated by connect and class, respec-
tively, out to 5‡. Evidently, the agreement is reasonable, even out to 5
standard deviations for the massive neutrino model. This accuracy is a
consequence of the increased temperature with which the training data
sampling chains are run, and the training temperature can be further
tuned manually to accommodate even stricter accuracy requirements
on a broader region.
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for the massive neutrino model resulting from a standard class-based run
(black) and NN models trained on sampled data from iterations 3, 2, and 1
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5 . 5 D I SCUSS ION AND CONCLUS IONS

We have presented connect, a novel, neural network based framework
for cosmological parameter inference. The method relies on an iterative
MCMC-based generation of training data which proves highly e�cient
in training the network to perform extremely well for MCMC based
cosmological parameter inference. We have tested the robustness
and versatility of the method by first building the network structure
and training algorithm on a decaying cold dark matter (DCDM)
cosmological model and demonstrating that we can achieve results
almost exactly identical to well-converged class based MCMC runs,
and subsequently used connect in an o�-the-shelf manner to run
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parameter inference on a di�erent massive neutrino cosmology. Even
though the method was not previously tested or optimised on this
model we find results which are just as impressive as for the DCDM
model.

Hyperparameters of the iterative sampling. A few things can
be customised when using the iterative sampling method, including
convergence criteria, the size of the initial Latin hypercube, prior
bounds for the individual high-temperature MCMC samplings, the
maximum number of points to include from each iteration, and the
filtration of new data points. The convergence criterion for the
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Figure 5.14: Triangle plot of the marginalised posteriors of selected param-
eters in the massive neutrino model, as computed directly by class and by
the connect model. The contours represent the contours from 1‡ to 5‡, re-
spectively. There is a fair agreement between connect and class even out
to 5‡.

individual MCMC runs is chosen to be when R ≠ 1 < 0.01 between
the chains is valid for all sampling parameters, and the criterion for
halting the iterations is chosen to be when the variance between the
data acquired from two consecutive iterations is also at R≠ 1 < 0.01.
Depending on the complexity of the likelihood, these criteria could
be loosened. When filtrating points from each iteration to avoid
oversampling in certain regions, the amount of points actually included,
of course, decreases over time, and so another halting criterion for
the iterations could be when (almost) no new points are added to the
total dataset. These two criteria could even be combined, thus giving
larger robustness and a better guarantee of the whole best-fit region
being sampled. The maximum amount of points included by each
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iteration is the number of points extracted from the high-temperature
MCMC samplings before doing any filtration. This number can be
varied depending on the di�culty in sampling the likelihood function.
A simpler likelihood function allows for very quick convergence when
having a larger maximum amount, which is apparent from our results
for massive neutrino model, where this parameter was set to 3◊ 104

while it was set to 2◊ 104 for the DCDM results. There can, however,
also be a reason to raise this number for more complicated models,
since we would then have a better representation from the MCMC
chains. This is not ideal for the first few iterations though, since we
would waste many more class computations given the low accuracy
of the first iterations. The size of the initial Latin hypercube was
chosen to 104 points for both of our cosmological models, but this
could perhaps be brought down due to the fact that the bounds are
chosen to be quite large in order for it to encapsulate all of the regions
of significant likelihood. If one knows roughly where the best-fit region
is, a much smaller Latin hypercube could be su�cient. The priors on
the high-temperature MCMC samplings were chosen to be the same
as the bounds of the initial Latin hypercube, but if the hypercube is
shrunk, the priors should be set di�erently than the bounds so as to
not exclude significant parts of the parameter space. Due to the nature
of the iterative method, convergence should be reached even if the
initial Latin hypercube has little to no overlap with the best-fit region
(it might take more iterations though), but more tests are needed
regarding this.

CPU time comparisons. Comparing the CPU intensity of inference
run with connect and with standard class based methods is some-
what involved. There is an initial overhead in training the connect
emulator for a given model of order 5◊ 104 class evaluations depend-
ing on the number of iterations and how many points each iteration
should contribute. However, once the network has been trained the
CPU consumption from the connect based MontePython inference
comes almost exclusively from the likelihood evaluation when using the
full Planck likelihood, not from the emulation. A CPU consumption
of similar size as evaluations of the neural network arise when using
the Planck lite likelihood instead, thus making the speedup much more
profound during the MCMC runs. A single evaluation of the C¸ spectra
for a cosmological model takes of order 5 s (depending on the cosmo-
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logical model — about twice as much for DCDM) to evaluate using
class on a modern intel CPU core while connect only uses around
3 ms (including interpolation of the C¸s)! This is an immense speedup
of three orders of magnitude, and this is also apparent from the time
consumption of an MCMC. The MCMC runs using class as cosmologi-
cal module each took 200 hours with 6 chains and 6 CPU cores for each
chain. This enables the class computations to be parallelised which
brings down the total time at the cost of using 6 times the CPU cores.
When using connect as cosmological module, we again use 6 chains,
but only one CPU core per chain is necessary since the evaluation of
the network is not parallelisable. These runs, however, take less than
two hours to reach the same level of convergence and a similar amount
of accepted steps, so the MCMC runs using connect are sped up by a
factor of more than 600. This is in great agreement with the di�erence
in the evaluation times when factoring in the time consumption of the
Plank lite likelihood evaluations.

We also need to consider the overhead from sampling of training
data, which consists of a number of class computations and, in the
case of iterative sampling, high-temperature MCMC sampling and
training of neural network models. There is not much to do about
the class computations except for limiting the number of them and
using many CPU cores on a cluster. With the iterative sampling
method the class computations are embarrassingly parallelisable, and
the only way to limit the number of computations is to optimise the
choice of points in the parameter space to compute and not throw any
away in the end. Unfortunately we have to throw away the initial
Latin hypercube since the inclusion of this worsens the performance
of the network, and for complicated likelihood shapes, we often need
to discard the first iteration as well, as argued previously. This means
that there are around 104 class computation that we have performed,
but cannot use in the final dataset. The high-temperature MCMC
samplings are much less expensive in CPU time, but using a normal
Metropolis-Hastings algorithm, the sampling is not very parallelisable,
and so the time consumption is significant compared to the class
computations utilising hundreds of CPU cores at once. The training of
the network is quite fast on a GPU, and it normally takes around 5-8
minutes to train our networks using datasets of ≥ 5◊ 104 points on
two GPUs with distributed training, so we can probably not bring this
down any further. The computation time of a single iteration in the
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sampling takes about on hour at this point with 500 CPU cores and
two GPU cores allocated. The class computation utilise all CPUs for
around 10-15 minutes, whereafter the training uses both GPUs for 5-8
minutes, and lastly the MCMC sampling uses only a handful of CPU
cores for around 20-40 minutes depending on the di�culty of achieving
convergence. This means that we only use a fraction of the resources
for most of the time, but limiting the amount of CPUs to match the
MCMC sampling would increase the time of class computations many
times. The biggest speedup in the iterations would thus come from the
high-temperature MCMC sampling being modified with a more paral-
lelisable algorithm on either a GPU or the many CPU cores available
anyway for the class computations. This could bring the sampling
part down to a few minutes or even seconds, leaving only class compu-
tations and training as the time consuming parts and thus decreasing
the time for each iteration to 20 minutes when using the same resources.

MCMC methods and other sampling strategies. For the results
presented in this paper we have used the Metropolis-Hastings algorithm
for the samplings of parameter space through integration with the pop-
ular code MontePython. A benefit of doing this is that we can utilise
the entire library of likelihoods contained within MontePython. This
means that nothing has to be rewritten and our connect plug-in really
provides a plug-and-play solution. The standard Metropolis-Hastings
algorithm used for the sampling is, however, not parallelisable to more
than a handful of chains running simultaneously, and therefore the
MCMC is quite time consuming when compared to everything else dur-
ing an iteration (assuming enough CPU cores for the class computa-
tions to be parallelised). In order to speed up the process, we need to
consider alternative sampling methods as well as how to utilise di�erent
likelihoods in the analysis.

There are many ways of sampling the parameter space of a model
and MCMC with Metropolis-Hastings is widely chosen mainly due to
the cost of evaluating Einstein–Boltzmann solver codes. With the use
of neural networks for emulation, a whole new world of parameter infer-
ence beyond MCMC sampling opens. Due to the neural network being
a smooth function, gradients are not only easy to access but also very
numerically stable. This means that gradient-based methods like Hamil-
tonian Monte Carlo [137] are now a possibility. It is even possible now
to move away from MCMC methods and compute profile likelihoods,
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given that optimisation is so much faster and more robust than when
using class.

In order for us to really utilise the speedup of the emulation, we need
some way around the time consumption of likelihood evaluations, which
is especially cumbersome for the full Planck likelihood. An idea used by
ref. [113] is to translate the likelihoods into TensorFlow syntax in order
for it to run rapidly on a GPU. This way one can perform the sampling
of the parameter space on the GPU as well, thus having parameter
inference in mere seconds (using a parallelisable sampling method
such as the a�ne invariant sampling algorithm [138]). It requires a
lot of work to translate the more heavy likelihoods, so a full library
of GPU-compatible likelihoods is probably not realisable in the next
few years. A simple solution could also be optimisation of the existing
likelihood codes (if possible), since many probably have been written
knowing that the class computations will always be much slower and
therefore had no reason to be written in the most optimal way. This
too requires a significant amount of work, and so this is most likely also
not happening in the immediate future. A more easy-to-code solution
could in fact be emulation of the likelihood functions themselves. This
would allow for both a faster sampling with normal MCMC methods,
since the evaluation of the likelihood functions would all be on the level
of the connect evaluations, and compatibility with GPUs allowing for
more sophisticated gradient-based or parallelisable sampling methods
leading to reliable parameter inference in seconds.

Reproducibility. We provide the complete connect frame-
work on GitHub for public use available at https://github.com/
AarhusCosmology/connect_public. All the parameter files used
for connect are included as well as a brief description of how to
use connect on its own and with MontePython. Any version of
MontePython supporting class as cosmological module can be used
with connect without any alterations to the source code. We used
our own version of class written in C++, and thus named class++,
but any version supporting the wrapper functions lensed_cl() and
get_current_derived_parameters() can be used. class++ along
with a forked version of MontePython are both available from our
GitHub organisation page https://github.com/AarhusCosmology.

https://github.com/AarhusCosmology/connect_public
https://github.com/AarhusCosmology/connect_public
https://github.com/AarhusCosmology
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APPENDIX 5 .A : STRUCTURE OF THE CODE

In our implementation we have collected all the classes and functions
to be used in a source folder, all the parameter files in an input folder,
and all the trained models in a folder called trained_models. We
have also included a space for all the training data, which is automati-
cally sorted in folders with a specified job-name and subfolders with the
amount of data points (iteration number) as the name upon creation
of the data when using Latin hypercube sampling (iterative sampling).
These data folders are collected in the folder data. Within the source
folder, the custom_functions.py file contains classes for adding new
activation functions and loss functions, which gives the user an easy way
of implementing new custom functions for training networks. Within
the source/architecture folder, users can in addition easily define en-
tirely new architectures for the network and tailor everything to their
needs. In the folder mcmc_plugin we have made a wrapper for trained
models to mimic class. This structure is depicted in figure 5.15.
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codes

montepython

class

connect

connect.py Ω Main script — callable with keywords
create and train.

.

source

custom_functions.py Ω Customise loss and activation
functions.

.

architecture Ω Define architectures beyond a fully
connected network.

.

...

input Ω Parameter files specifying the creation of data
and training hereon. .

trained_models Ω Saved models trained by connect.

data Ω Training data generated by connect.

decaying_cdm

massive_nu

...

mcmc_plugin Ω Plug-in for MontePython and Cobaya.

Figure 5.15: The directory structure of a typical installation. Monte-
Python, class and connect are located side-by-side in some root folder
codes.

Ending of reference [2]



6
US ING CONNECT FOR PROF ILE
L IKEL IHOODS

An interesting aspect of using machine learning to emulate cosmolog-
ical observables is the plethora of numerical and statistical methods
instantly available that would otherwise be impossible or unfeasible
with conventional means. This includes the frequentist method of pro-
file likelihoods for parameter inference, which involves maximising the
likelihood function, often requiring many function evaluations. Thus, a
fast evaluation time is completely necessary to optimise the likelihood
e�ciently.

Another benefit of emulation apart from the much faster evaluation
time is the access to gradients of the observables with respect to the
cosmological parameters. Not only does this enable gradient-based sam-
pling for Bayesian inference, but it also aids in the optimisation utilised
when computing profile likelihoods.

This chapter presents the following paper in its entirety:

• Andreas Nygaard, Emil Brinch Holm, Steen Hannestad, and
Thomas Tram. “Fast and e�ortless computation of profile
likelihoods using CONNECT.” In: JCAP 11 (2023), p. 064.
doi: 10.1088/1475-7516/2023/11/064. arXiv: 2308.06379 [astro-
ph.CO].

The paper was meant as a proof of concept since only the marginalised
Planck lite likelihood was used. This is due to it being the only CMB
likelihood easily translatable to the syntax of TensorFlow, which is nec-
essary to compute the gradient of the likelihood with respect to the
observables. The paper discusses the problem of global optimisation
and introduces a modified version of the basin-hopping algorithm which
was used in order to utilise gradients.

Although e�cient, the optimisation algorithms presented in this chap-
ter have not been used with connect since this paper came out due
to the scarcity of di�erentiable likelihood codes. Subsequent projects
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using connect to compute profile likelihoods have used the simulated
annealing algorithm which is standard for computing profile likelihoods
conventionally in cosmology. When used this way, connect also pro-
vides a faster and more robust optimisation, and with the develop-
ment of e�cient profile likelihood codes using simulated annealing, e.g.,
prospect [8], the need for further study of di�erentiable likelihood
codes has not been immediate. I believe, however, that it is important
work in the long run, and it will eventually be useful if either di�eren-
tiable likelihood codes are written, likelihood codes are emulated, or the
entire computation from cosmological parameters to likelihood values
is emulated instead of observables.

Beginning of reference [3]

Fast and effortless computation of profile
likelihoods using connect

Andreas Nygaarda, Emil Brinch Holma, Steen Hannestada,
Thomas Trama

aDepartment of Physics and Astronomy, Aarhus University, DK-8000
Aarhus C, Denmark

Abstract. The frequentist method of profile likelihoods has recently
received renewed attention in the field of cosmology. This is because
the results of inferences based on the latter may di�er from those of
Bayesian inferences, either because of prior choices or because of non-
Gaussianity in the likelihood function. Consequently, both methods are
required for a fully nuanced analysis. However, in the last decades, cos-
mological parameter estimation has largely been dominated by Bayesian
statistics due to the numerical complexity of constructing profile likeli-
hoods, arising mainly from the need for a large number of gradient-free
optimisations of the likelihood function.

In this paper, we show how to accommodate the computational re-
quirements of profile likelihoods using the publicly available neural net-
work framework connect together with a novel modification of the
gradient-based basin-hopping optimisation algorithm. Apart from the
reduced evaluation time of the likelihood due to the neural network, we
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also achieve an additional speed-up of 1–2 orders of magnitude com-
pared to profile likelihoods computed with the gradient-free method of
simulated annealing, with excellent agreement between the two. This al-
lows for the production of typical triangle plots normally associated with
Bayesian marginalisation within cosmology (and previously unachiev-
able using likelihood maximisation because of the prohibitive computa-
tional cost). We have tested the setup on three cosmological models:
the LCDM model, an extension with varying neutrino mass, and finally
a decaying cold dark matter model. Given the default precision settings
in connect, we achieve a high precision in ‰

2 with a di�erence to the
results obtained by class of D‰2 ¥ 0.2 (and, importantly, without
any bias in inferred parameter values) – easily good enough for profile
likelihood analyses.

6 . 1 INTRODUCTION

In the last few decades, parameter inference in cosmology has tradition-
ally been done using Bayesian statistics. In Bayesian parameter infer-
ence, the goal is to characterise the multidimensional posterior proba-
bility distribution. This is often done using Markov-chain Monte Carlo
sampling. Subsequently, estimates and uncertainties on single parame-
ters are obtained by integrating the multidimensional posterior distri-
bution over all other parameters, a process called marginalisation [139].
This is the main reason for the popularity of Bayesian parameter infer-
ence in cosmology: all credible intervals and two-dimensional posterior
distributions are readily computable once a representative sample of the
multidimensional posterior has been obtained.

Marginalisation requires a way to associate (prior) probability to vol-
umes of parameter space, so the marginalised posterior distributions
and the credible intervals [140] may sometimes be completely domi-
nated by the choice of prior. This e�ect is sometimes referred to as
volume e�ects, because the e�ect is associated with the prior volume
being integrated. This can be seen as an advantage because it makes
it easy to build e.g. theoretical prejudice into the statistical analysis.
For instance, one may wish to penalise a model containing a parameter
that needs to be extremely fine-tuned to provide a good fit to the data.
However, given that we often do not know the true underlying model,
it could very well be that the true underlying model is observationally
equivalent to the one proposed, but in the true model, the equivalent
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parameter is not fine-tuned. Thus, if we penalise the proposed model a
priori, we might fail to discover the true model.

If we want to avoid this trap, we may instead employ frequentist statis-
tics. Broadly speaking, this simply entails that we substitute marginali-
sation for maximisation; instead of integrating out the extra parameters,
we maximise the likelihood over these parameters. The resulting object
is the profile likelihood, which has recently gained increased popular-
ity [7, 141–148]. From this profile likelihood, we may then derive confi-
dence intervals [149], akin to the credible intervals in Bayesian statistics.
The advantage of the profile likelihood is that it may reveal interesting
features of the model that would be missed in the Bayesian approach,
but the disadvantage is the di�culty and computational cost associated
with the large number of multidimensional optimisations. Early papers
on cosmological parameter inference have examples of both marginal-
isation (see e.g. [150]) and profiling (see e.g. [151–153]; see also [154]
for an early discussion of profiling versus marginalisation). However,
the introduction of MCMC techniques in marginalisation [155, 156] led
to their increasing dominance in the field because of their speed and
simplicity.

Many of the computational problems of profile likelihoods are solved
by the recent advancements of machine learning within the field of cos-
mology. Many di�erent cosmological emulators of observables, using
e.g. neural networks [2, 109, 113, 134, 157] or Gaussian processes [121,
122, 158], have emerged in recent years, and these all benefit from much
faster evaluation times than ordinary Einstein–Boltzmann solver codes.

In this paper, we show how connect [2] can facilitate fast and ac-
curate computation of one- and two-dimensional profile likelihoods at
a tiny fraction of the cost of a more traditional approach. This perfor-
mance enhancement derives both from the speed-up of evaluating the
neural network instead of class [27] or camb [159] but also because the
gradient of the likelihood can be computed fast and accurately through
automatic di�erentiation techniques. The paper is organised as follows:
In section 6.1, we give an introduction; in section 6.2, we introduce
profile likelihoods and discuss the di�erence between profile likelihoods
and marginalised posteriors; in section 6.3, we give a brief overview of
the optimisation algorithms we use; and in section 6.4, we provide some
more practical details regarding the implementation. In section 6.5, we
show, for the first time, triangle plots for the profile likelihood com-
pared to the posterior distribution for the LCDM-model as well as for
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an extension with varying neutrino mass and degeneracy. We also show
a profile likelihood of the decay constant in a decaying cold dark mat-
ter model as an example where the training data of the neural network
itself su�ers from large volume e�ects. Finally, we give our conclusions
and future outlook in section 6.6.

6 . 2 PROF ILE L IKEL IHOODS AND BAYES IAN
INFERENCE

Given an N -dimensional parameter space Q where we are mainly in-
terested in constraining the parameters of an M -dimensional subset W,
the profile likelihood L(q) of a likelihood function L(q, eq) on the full pa-
rameter space is obtained by maximising the dimensions not contained
in the reduced space W [160],

L(q) = max
eq

⇣
L(q, eq)

⌘
, q œ W, eq œ Q \W , (6.1)

where q represents a vector in the parameter subspace of interest and eq
a parameter vector in the subspace of Q we maximise over. Parameters
in the latter subspace are commonly referred to as nuisance param-
eters, and usually we are interested in either one-dimensional profile
likelihoods, M = 1, for one-parameter constraints, or two-dimensional
profile likelihoods, M = 2, to constrain the correlation between pairs of
parameters. Since the profile likelihood (6.1) is obtained by maximis-
ing a subset of the parameter space, frequentist inference based on it
is an optimisation problem (as opposed to Bayesian inference, which is
a sampling problem). The main contributions of this paper are novel
strategies for carrying out this optimisation.

From the profile likelihood, confidence intervals (or regions, if M > 1)
can be obtained using the Neyman construction [161], where 68.27%
(95.45%) confidence regions for q are defined implicitly by the regions
D‰2(q) < 1.0 (4.0) with the definition

D‰2(q) © ≠2 log

0

@ L(q)
max

q
(L(q))

1

A . (6.2)

The coverage of the intervals constructed using the Neyman method
is exact whenever the profile likelihood is Gaussian or whenever there



154 using connect for profile likelihoods

exists a reparametrisation in which it is. Alternative interval construc-
tions, such as the Feldman-Cousins prescription [162], are known to
produce more accurate interval coverages, but since the focus of this pa-
per is on the optimisation and not the interval construction, we employ
the Neyman construction throughout.

As seen in the definition (6.1), the profile likelihood is a maximum
likelihood estimate in the reduced subspace and therefore inherits the in-
variance under reparametrisations of this subspace from the latter [160].
This is in contrast to posterior distributions from the Bayesian infer-
ences, which may change with the specific parametrisation. To illustrate
the di�erence between the marginalised posterior distribution and the
profile likelihood, we investigate a toy likelihood comprised of two Gaus-
sian distributions with di�erent normalisations and covariance matrices.
The two Gaussians have only a slight overlap, as shown in figure 6.1,
and the one with the largest maximum is much more narrow in the
◊2 parameter. This makes the contribution of the taller peak to the
posterior in the ◊1 parameter much less when marginalising over the ◊2
parameter in the case of uniform priors, even though the likelihood is
actually larger in this peak. This shows how the greater volume of a
less significant likelihood peak can dominate the marginalised posterior.
When computing a profile likelihood in the ◊1 parameter, the likelihood
is optimised for each fixed value of ◊1, and so the profile looks like a pro-
jection of the two-dimensional surface onto the one-dimensional ◊1-axis.
This, of course, shows the two peaks with their actual height di�erences.

The two di�erent ways of representing the likelihood function come
from the two di�erent ways of interpreting probability in frequentist
and Bayesian statistics. Neither method is more correct; they simply
answer di�erent questions. Frequentist inference answers the question
of how we can choose a range in the parameter space based on the data
such that the true value of the parameter will fall within the range
in (1≠ –)◊ 100% of the asymptotically often repeated realisations of
the experiment. This range is called the confidence interval with the
level of significance –. Bayesian inference treats the true value of the
parameter as a random parameter chosen from a distribution, and the
question is which range of the parameter space we can choose so that
we are (1≠–)◊ 100% certain that the true value has taken a value that
lies within the range. This is called the credible interval with the level of
significance –. The posterior can therefore be thought of as a probability
distribution, while the profile likelihood cannot. Ultimately, it is this
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Figure 6.1: The bottom panel shows the function value of the likelihood func-
tion written in the panel, while the top panel shows the resulting marginalised
posterior and the profile likelihood, both scaled to a maximum of unity. The
posterior is dominated by the shorter large Gaussian, while the profile is dom-
inated by the taller small Gaussian. The two one-dimensional statistics thus
reveal complementary information about the actual likelihood.

di�erence in interpretation that manifests in the di�erent constraints
obtained from the two statistical paradigms.

6 . 3 OPT IMISAT ION OF THE L IKEL IHOOD
FUNCTION

An accurate and robust optimisation routine is crucial for profiling likeli-
hoods, and this task can be di�cult in certain situations. Optimisation
routines typically require many function evaluations in order to perform
well, and this is especially true if there is no prior knowledge of the cost
function. In the case of using an Einstein–Boltzmann solver code like
class, the function takes on the order of 10 core seconds to evaluate
(including both the Einstein–Boltzmann solver code and the likelihood
codes), and this quickly adds up to large computation times. Certain
optimisation methods make use of gradients, but Einstein–Boltzmann
solver codes tend to be numerically unstable with respect to di�eren-
tiation due to di�erent approximation schemes toggling in di�erent re-
gions of parameter space. Furthermore, in order to construct profile
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likelihoods, it is essential that the global optimum be found. Therefore,
global optimisation routines are essential.

6 . 3 . 1 GLOBAL OPTIMISAT ION

The problem of global optimisation is numerically di�cult. Methods
like gradient descent [163] and the simplex algorithm [164] can get stuck
in local optima, so this can be a problem whether or not one has access
to gradients of the likelihood function. There exist, however, specific
methods that can e�ectively search the parameter space in clever ways
inspired by MCMC methods. One such method that has proven to
be fairly e�cient is simulated annealing [165], which does not require
gradients and is therefore a suitable choice when dealing with Einstein–
Boltzmann solver codes. In short, this method searches the parameter
space as any other MCMC but gradually lowers the sampling tempera-
ture while doing so. This makes the features of the likelihood landscape
more profound over time, allowing the MCMC chain to eventually set-
tle on the global optimum. The optimisation is highly dependent on
the chosen temperature schedule and somewhat ine�cient when the
acceptance rate of the MCMC is small. Despite the individual simu-
lated annealing optimisation being sequential, each point in a profile
likelihood can be optimised in parallel, so one can therefore do profile
likelihoods based on simulated annealing in reasonable time, although
the number of evaluations needed for an inference of all parameters
in a typical cosmological model, as well as their correlations, makes it
unfeasible to do with an Einstein–Boltzmann solver code.

Instead, we use a neural network from the connect framework to
speed up the evaluation of the observables. This means that the like-
lihood evaluation time is dominated by the comparison of theoretical
observables to data. This is, however, a significant decrease in computa-
tional cost, and using the same method as before (simulated annealing),
we can obtain profile likelihoods much quicker.

We can even improve on the method now that we are using a neu-
ral network that does not su�er the same numerical instabilities with
respect to di�erentiation as Einstein–Boltzmann solver codes do. The
auto-di�erentiation of the TensorFlow [125] framework lets us easily dif-
ferentiate the neural network with respect to the input parameters, so
we can now make use of gradient-based optimisation techniques. How-
ever, before that, we need to be able to auto-di�erentiate the likelihood
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calculation as well. We are seeking the derivative of the likelihood value
L with respect to the cosmological input parameters q, and the network
only provides us with the derivative of the observables O (C¸ spectra,
power spectra, etc.) with respect to the cosmological parameters. By
the chain rule, we therefore need the derivative of the likelihood calcu-
lation with respect to its input (the cosmological observables computed
by the network),

dL
dq

=
dL
dO

dO

dq
. (6.3)

Obtaining the derivative of the likelihood with respect to cosmological
observables proves to be quite elaborate, but this is discussed further
in section 6.4.

Equipped with auto-di�erentiation all the way from cosmological
input parameters to the likelihood value, one can now make use of
gradient-based methods. Relying solely on these can be a problem since
gradient-based methods are often unable to explore other optima than
the closest. A global optimisation method that can circumvent this is-
sue is the basin-hopping [166] algorithm. This method is reminiscent
of simulated annealing, but with the addition of a local optimisation in
each step. The method therefore “hops” between di�erent local optima,
or “basins”, instead of hopping between random points. This reaches
convergence much quicker since fewer steps are needed due to the local
optimiser always placing each point at an optimum. This method is
very dependent on a good local optimisation method; otherwise, it will
reduce to simulated annealing in the limit of a trivial optimiser. One
drawback of this optimisation method is that one is not guaranteed to
find the global optimum given the stochasticity of the optimiser [167],
and indeed there is a probability of convergence at a suboptimal point
(see appendix 6.B). In our case, however, this is a quite small probabil-
ity due to the smoothness of the neural networks, and it can be heavily
decreased through precision settings.

6 . 3 . 2 LOCAL OPTIMISAT ION

A local optimisation method should, in our case, take only a few steps
in order to reach the optimum. Gradient-based methods are obviously
suitable for this, but the simplest of such methods, gradient descent,
does not perform well in this regard. The reason for this is that the
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step size will decrease with the slope, and a lot of steps will be taken
close to the optimum due to the vanishing gradient. Some parts of the
likelihood function can even be close to flat, and this requires a lot of
steps by the gradient descent optimiser. A better choice could be to also
use second-order derivatives, which would mean that we could almost
guess the correct optimum after one evaluation if the likelihood land-
scape is close to Gaussian. The second-order derivatives are, however,
not easy to get in our case since the TensorFlow graph of this computa-
tion becomes too large to handle. An appropriate compromise could be
a pseudo-second-order method like the Levenberg–Marquardt [168, 169]
or Broyden–Fletcher–Goldfarb–Shanno [170–173] (BFGS) algorithms.
These use first-order derivatives to approximate the Hessian in order
to quickly locate the nearest optimum. TensorFlow has an implemen-
tation of BFGS, so this has been chosen as the local optimiser to use
with the global basin-hopping method.

6 . 4 IMPLEMENTATION

6 . 4 . 1 AUTO-D IFFERENTIAB IL ITY

In order for us to use gradient-based methods, we need auto-
di�erentiation at each step in the evaluation of the likelihood function.
We use the built-in reverse mode di�erentiation of TensorFlow, and
this requires every operation during the evaluation to be written with
TensorFlow syntax in order for them to be auto-di�erentiable. Many
popular likelihood codes, such as the full Planck 2018 likelihood [127]
(including low-¸ TT , low-¸ EE, high-¸ TT + TE + EE, and lensing),
are complex and tedious to translate to TensorFlow syntax, so as
of now only the Planck lite likelihood has been translated, first to
Python by Ref. [128] and then to TensorFlow by Ref. [113]. We have
altered the TensorFlow version from Ref. [113] to accommodate neural
networks from connect and this involved another rather tedious task
of interpolation. connect only computes the same ¸-grid that class
does, and this is more than an order of magnitude fewer points than
required by the likelihood code. We have therefore implemented a cubic
spline interpolation routine in the likelihood code since no suitable
interpolation method is implemented in TensorFlow. This has to be
written not only in TensorFlow syntax but also using only di�erentiable
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operations (some functionality in TensorFlow is not auto-di�erentiable).
This adds an extra layer of computation to equation (6.3),

dL
dq

=
dL

dC[2508]
¸| {z }

Likelihood code

Interpolationz }| {
dC[2508]

¸

dC[100]
¸

dC[100]
¸

dq| {z }
Neural network

, (6.4)

where C¸ is a vector of C¸ values, which is the observable used by the
likelihood code in our case, and the number in square brackets tells
the number of C¸ values. One could simply emulate all 2508 values
needed by the code, but this is a computational waste when training
the network since all the information is contained in only the 100 values
that class actually calculates [2] (the number of points calculated by
class di�ers based on input and precision settings). Since each of the
computational steps in equation (6.4) is now di�erentiable, the total
derivative of the likelihood with respect to the cosmological parameters
can be used for optimisation purposes. A single function evaluation of
the gradients takes on the order of ≥10≠2 seconds and is approximately
twice as expensive as evaluating just the likelihood itself (using the
neural network, the interpolation, and the data comparison).

6 . 4 . 2 ENSEMBLE BAS IN -HOPP ING

When training a neural network with connect, the training data is
gathered using multiple MCMC runs in an iterative manner [2], where
each iteration uses an MCMC sampler to gather data using the neural
network from the previous iteration. This means that we already
have a covariance matrix and an estimate for the best-fit point as a
starting point. This is a great help when doing the actual maximum
likelihood optimisation, since the likelihood landscape is roughly
known beforehand. We can use this information to slightly modify
the standard basin-hopping algorithm to accommodate this additional
information. Steps are normally taken sequentially, but since we have a
covariance matrix and a best fit estimate, we can construct a proposal
distribution and draw multiple points from it at once. These can
then all be locally optimised in parallel, thus exploring di�erent local
optima simultaneously. We can then centre a new proposal distribution
around the best point of the ensemble of optimised points and lower
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the sampling temperature. Repeating this allows us to home in on the
global optimum much faster due to the parallelisability. The altered
algorithm is sketched below1:

Cov(q) = covariance matrix from MCMC
b = estimate of best-fit point
d = dimension of parameter space
opt(q) = local optimiser (returns value and position)
p(q) = MultivariateGaussian(b,Cov(q)) (proposal dist.)
T = 1.0 (sampling temperature)
Tmin = minimal temperature (works as a tolerance)
N = number of points in ensemble
while T > Tmin do

Larray = zeros(N)
Parray = zeros(N , d)
for i in range(N ) do (parallelisable)

X = point drawn from p(q)
Larray[i], Parray[i] = opt(X)

Lmin = min(Larray) (new best value)
imin = argmin(Larray)
b = Parray[imin] (new best-fit point)
T = T/2 (reduce the temperature)
p(q) = MultivariateGaussian(b,Cov(q)·T)
if the majority of the ensemble finds the same optimum then
Èbreak from while loopÍ

Lmin is now the optimised function value and b is the best-fit point

6 . 4 . 3 CONSTRAINTS ON PARAMETER SPACE

Profile likelihoods are not subject to any priors as marginalised poste-
riors are, but there might still be benefits to confining the optimisation
within certain ranges in the parameter space due to physical constraints.
An example here could be the mass of a particle, which must be pos-
itive. When computing profile likelihoods using Einstein–Boltzmann
solver codes and simulated annealing, this will never be an issue since
the code will raise a computation error in such a case, and the like-

1 A similar approach can be found in Ref. [174], where multiple individual workers
perform independent basin-hopping optimisations but exchange information about
optimal starting points through a master process.
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lihood code will then return a very low likelihood such that no point
beyond this physical boundary will be accepted. Neural networks will,
however, always produce output based on any input of the correct type
and dimensionality, so they might learn some behaviour linked to a cer-
tain parameter as it decreases. It is then able to extrapolate, and the
result might be a good fit to the data either by chance or because of
this extrapolation. This is exactly the case for the model with a varying
neutrino mass used as a test case in this paper. It is therefore beneficial
to confine our optimisation within given parameter ranges. A variant of
the BFGS algorithm dubbed BFGS-B [175] performs the optimisation
within a confined box in the parameter space. This is very useful in
our case, but unfortunately it is not implemented in TensorFlow. A
solution is therefore to introduce a smooth and di�erentiable penalty
function that penalises the likelihood when evaluating a point outside
of the box. We have chosen a very steep exponential function that in-
creases depending on the distance from the boundary, and this ensures
that gradients are still meaningful in a way such that any evaluation
outside the box will send the optimiser back inside the box. A proper
implementation of BFGS-B might be beneficial in the future.

6 . 4 . 4 WORKFLOW

When doing profile likelihoods with connect, there are a few steps.
First of all, one needs to gather training data and train a neural net-
work with a specific cosmological model implemented in class. Then,
it is a good idea to run a normal MCMC with the neural network in
order to have a good covariance matrix along with Bayesian inference
for comparison. The covariance matrix from the gathered training data
can be used instead2. Then one needs to choose at which points in the
parameter space to optimise for both one- and two-dimensional profile
likelihoods; the idea is to sample with more resolution where the like-
lihood function varies significantly as well as near its maximum. This
can be tricky if one does not know any features of the likelihood func-
tion of the particular cosmological model, and this is another reason
for doing an MCMC run with the neural network beforehand. When
the posteriors are known, a good initial guess is that the profile like-
lihood will somewhat resemble them. This is exactly true when there

2 The choice of covariance matrix does not significantly impact the result as long as
the initial proposal distribution is wide enough to encapsulate the best-fit region.
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are no volume e�ects and only flat priors are used, but in any case, it
is reasonable to assume that at least some features of the profile like-
lihood will overlap with the features of the posterior. In the case of
one-dimensional profile likelihoods, one can often get away with simply
choosing a set of equally spaced points. In the case of two-dimensional
profile likelihoods, it is not as straightforward, but a good guess is to use
the points of the histograms from which the posteriors are computed.
Any non-zero bin in these histograms corresponds to a region where the
MCMC has accepted points, and so we can choose these bin centres
as the points in our two-dimensional profiles (see appendix 6.A). If the
computed profiles seem to not be best represented by these points, a
routine to manually add points by clicking in the plots has been included
(see appendix 6.B). A full automatisation of which points to choose is
beyond the scope of this work but should be further investigated.

6 . 5 RESULTS AND DISCUSS ION

In order to test the performance of the optimisation routine, we have
chosen three cosmological models as examples: LCDM, massive neu-
trinos, and decaying cold dark matter. These three models each have
features that are useful for highlighting di�erent problems and their
corresponding solutions.

6 . 5 . 1 LCDM

The posterior distribution of the standard LCDM model is almost per-
fectly Gaussian under standard CMB data [127] and therefore has no vol-
ume e�ects. In this case, we expect to see the profile likelihoods coincid-
ing perfectly with the posteriors in both the one- and two-dimensional
plots. We did not train a specific LCDM neural network with con-
nect since this will be contained in the neural networks of the other
two models. We have therefore used the same network as for the mas-
sive neutrinos model, where the parameters mncdm and degncdm were
fixed to 0.06 and 1.0, respectively, in order to match a value of the ef-
fective number of degrees of freedom of Ne� = 3.046. When fixing the
two model-specific parameters, the rest of the network behaves like a
LCDM network trained with these two parameters fixed at the same
values.
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Figure 6.2: Posteriors and profile likelihoods of the LCDM model. The blue
filled contours and the blue lines on the diagonal are the posteriors from an
MCMC run with the neural network for one and two dimensions, respectively,
and the red contour lines and the red stars on the diagonal are the profile
likelihoods for one or two dimensions, respectively. The cyan star marks the
best-fit point from a global optimisation of the entire neural network.

Figure 6.2 shows a full triangle plot of both posteriors and profile
likelihoods for the LCDM model. The blue lines and filled contours
are the one- and two-dimensional posteriors, respectively; the red stars
and contour lines are the one- and two-dimensional profile likelihoods,
respectively; and the cyan stars mark the best-fit point of the entire
parameter space. The stars in the one-dimensional plots are the actual
calculated points in the profile likelihoods, but for the two-dimensional
plots, we only show the contour lines calculated from the computed
points in the same way that the posterior contours are calculated from
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Figure 6.3: Posteriors and profile likelihoods of the massive neutrinos model.
The blue filled contours and the blue lines on the diagonal are the posteriors
from an MCMC run with the neural network for one and two dimensions,
respectively, and the red contour lines and the red stars on the diagonal are
the profile likelihoods for one or two dimensions, respectively. The cyan star
marks the best-fit point from a global optimisation of the entire neural network.

the histograms. The agreement between the posteriors and the profile
likelihood is excellent, and since we would expect this to be true for a
near-Gaussian likelihood, this validates our optimisation routine.

6 . 5 . 2 MASS IVE NEUTRINOS

Now that we have tested our optimisation on a simple likelihood with-
out any volume e�ects, like in the LCDM model, we can move on to
a model that actually contains volume e�ects. The inclusion of a vari-
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Figure 6.4: 68.27% and 95.45% confidence (credible) intervals found using
frequentist (Bayesian) statistics for the two models, LCDM and massive neu-
trinos. We clearly see that the constraints from posteriors (blue) and profile
likelihoods (red) are identical for LCDM (top panel) but di�er somewhat for
massive neutrinos (bottom panel). Along with the constraints, the best-fit
point has been included as a centreline in the boxes.

able neutrino mass, mncdm, (two species are assumed to be massless)
and the degeneracy, degncdm, introduces new volume in the parameter
space, and the likelihood is not Gaussian for the neutrino mass. We
should therefore expect to see some di�erences between the posteriors
and the profile likelihoods. Figure 6.3 shows the posteriors and profile
likelihoods of this model. The posteriors are again shown in blue, while
the profile likelihoods are shown in red. We can clearly see di�erences
between the posteriors and profile likelihoods now, with the profile like-
lihoods being shifted slightly compared to the posteriors. The most
profound shifts are to higher values of H0 and lower values of both
As and ·reio, and it is interesting that the actual best-fit point (cyan
stars) lies on the edge of the 68.27% credible regions of the posteriors
involving H0, and the 95.45% confidence regions of the profile likeli-
hoods in H0 seem to alleviate the Hubble tension significantly. Since
we are only using the Planck lite likelihood, we cannot draw any reason-
able conclusions based on this, but it really emphasises how the volume
of the parameter space can impact parameter inference and that both
a Bayesian analysis and a frequentist analysis should be performed in
order to get the full picture.

The di�erences between a model with volume e�ects and one without
are more apparent from figure 6.4, where the 68.27% and 95.45% con-
straints from both the profile likelihoods and the posteriors are shown
for each of the two cosmological models, the LCDM model and the
massive neutrinos model. The additional volume of the massive neutri-
nos model not only broadens the constraints but also shifts some of the
parameters, as previously discussed.
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Figure 6.5: Comparison between one-dimensional profile likelihoods using
class and connect with simulated annealing and basin-hopping as optimisa-
tion routines, respectively. The profile likelihoods are in the parameters mncdm
and H0. The 68.27% and 95.45% confidence intervals are also shown.

In order to test the performance of the emulator, we compare the
results with profile likelihoods obtained using class and simulated an-
nealing. These are shown in figure 6.5, along with the 68.27% and
95.45% confidence intervals calculated from the connect profile like-
lihood. We see a great agreement between class and connect and
this further strengthens our confidence in the results obtained using
connect in figures 6.2 and 6.3.

6 . 5 . 3 DECAYING COLD DARK MATTER

In order to really put the framework and optimisation to the test, we
have included the model of decaying cold dark matter (DCDM) with
dark radiation (DR) as the decay product. This likelihood is notoriously
di�cult to sample and is also quite challenging when doing profile like-
lihoods [7]. With Planck lite data, the likelihood features a very slight
peak for high values of the decay rate, Gdcdm, with a height correspond-
ing to only D‰2 ¥ 0.5. For this, we require much higher precision than
for the other cosmological models, but achieving this turns out to be
very di�cult. The optimisation can only ever be as good as the neural
network used by the optimisation routine, and a good network suitable
for this particular optimisation requires a lot of training data around
this subtle likelihood peak. As of now, we are limited by the fact that
our training data for the neural network is generated by iteratively sam-
pling from the posterior, and this makes it very hard to properly sample
around the peak due to the large volume e�ects that the posterior is
influenced by. It can, of course, be solved by sampling maybe an order
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of magnitude more points to use as training data (as well as training for
more epochs and with a larger network architecture), but this becomes
unfeasible in terms of training the network.

Another approach would be to slice the parameter space at specific
values for any parameters exhibiting such problems and train di�erent
networks for each value of this parameter. This also requires more com-
putational resources, and if the goal is to have just the one-dimensional
profile likelihood in the parameter in question (Gdcdm in our case), this
is quite wasteful, and one might as well compute the profile likelihood
with class and simulated annealing. We can, however, use these in-
dividual networks for more, and so if we wanted a full triangle plot
of profile likelihoods, we would just use the appropriate network for
any point in a two-dimensional profile likelihood containing the sliced
parameter and use all networks at once for any point in all other two-
dimensional profile likelihoods and simply choose the lowest value of
‰

2. This adds a layer of complexity compared to using just a single net-
work containing the whole parameter space, but if any two-dimensional
profile likelihoods are needed, then this approach will be orders of mag-
nitude less computationally expensive than using class and simulated
annealing.

Figure 6.6 shows the profile likelihood in the Gdcdm parameter using
both class and connect. connect has been tested both using single
networks trained on the entire parameter space at di�erent sampling
temperatures and individual networks for each fixed value of Gdcdm.
The individual networks for each fixed value of Gdcdm have been trained
with the regular iterative approach of connect [2], and the networks
spanning the entire parameter space have been trained with a slight
modification. The first part of the training is identical to the regular
iterative approach with the default sampling temperature of T = 5, but
when convergence is reached, the sampling and training do not halt.
Instead, new data is gathered with a smaller temperature (T = 4) and
used to train a new network, which is then used to gather data for a
new network with an even lower temperature, etc. The training data
from consecutive iterations are not merged in this second part since
they have di�erent statistical properties due to di�erences in sampling
temperature. This annealing results in multiple networks with di�erent
sampling temperatures according to a predefined list that would not
be possible to obtain with just the regular iterative approach. This is
because the likelihood is di�cult to sample with small temperatures, so
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Figure 6.6: The top panel shows profile likelihoods in the Gdcdm parameter
with both class (simulated annealing) shown with black circles and connect
(basin-hopping and BFGS) using several individual networks for each fixed
value of Gdcdm shown with blue stars. The parameter vectors resulting from
the connect optimisations have all been evaluated by class and plotted as
a profile likelihood, shown with red diamonds. The middle panel shows profile
likelihoods resulting from neural networks with Gdcdm as a varying parame-
ter where training data has been gathered at di�erent sampling temperatures
(see text). The bottom panel shows the same kinds of profiles as the middle
panel, but with di�erent amounts of training data for the networks. Only the
temperatures T=1 and T=5 are shown in order to keep the figure simpler.

having only a small temperature from the beginning will not result in
a useable network for e.g. T = 1. By having the data gathered with a
slightly larger temperature as the foundation for the network gathering
the next data with a smaller temperature, it ensures that the network
is always very accurate when gathering data. The reason for wanting to
do this is that we cannot properly resolve this particular best-fit region
with too large of a temperature given that it is a very narrow and slight
band in the multidimensional likelihood surface. On the other hand, we
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cannot perform the entire sampling at a low temperature because the
accuracy would su�er. With inspiration from the simulated annealing
algorithm, this new approach takes all of this into account.

Another problem apparent in figure 6.6 is that the networks with
di�erent temperatures only seem to agree just around the minimum and
for higher values of Gdcdm3. This is, however, not surprising since we are
sampling training data from the posterior, which is heavily influenced by
volume e�ects towards high values of Gdcdm in this case. We therefore
have much more training data on the right side of the figure, which
means that all of the networks have better performance here.

The figure also shows results from individual networks with fixed val-
ues of Gdcdm, and we can clearly see that these resemble the results
from class much more. There is a small discrepancy in the depth of
the well, but this is due to small precision errors. The di�erence corre-
sponds to D‰2 ¥ 0.2 and this is definitely not significant given that the
same behaviour and shape are produced. The networks with di�erent
temperatures also seem to agree with the networks with fixed values
of Gdcdm for high values, so it is highly probable that it is a system-
atic error founded in the precision of neural networks. These networks
have, however, all been trained to per mille precision in all of the C¸

spectra, but when investigating the reason for the di�erences in ‰
2 we

found that the Planck lite likelihood is very sensitive to certain ranges
in ¸ for the TE spectrum. A per mille error in the TE spectrum can
lead to errors in ‰

2 up to roughly 0.3 around the best-fit, and that
seems to be in agreement with what we can see from the figure. This
is only relevant for this very slight likelihood peak, and since the peak
is more significant when using the full Planck 2018 likelihood [7], the
precision is most likely not an issue. Increasing the precision in the
networks, e.g. by training for more epochs, could potentially render the
e�ect unnoticeable in figure 6.6, but this would be without merit due
to the ‰

2 precision already being much greater than what is needed in
any actual case of use. Regardless of the minute ‰

2 discrepancy, the
connect networks seem to find the same optimal parameter vectors
that class finds, given that evaluating the points with class results in
more or less the same profile as class finds on its own (red diamonds
in the top panel of the figure). The TT spectrum is furthermore known
to have much more constraining power than both TE and EE, so we

3 The network with T = 5 is worse than the others due to it having training data from
all previous iterations as well, which usually is not a problem, but in this case the
precision needs to be very high.
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should expect the same shape in the profile likelihoods due to the suf-
ficiently high precision in the TT spectrum, and the small discrepancy
from the precision in the TE spectrum only shifts the ‰

2 values by a
small amount and not the parameter vectors. Parameter inference is
therefore not a�ected by this discrepancy. This is supported by the
curve with the red diamonds in figure 6.6, which shows the same points
in the parameter space obtained by the connect networks with fixed
values of Gdcdm but evaluated by class. We see that this curve is very
close to the one actually obtained by class, and this indicates that the
optimisations of the neural networks find the correct optima.

It stands to reason that we should be able to obtain the same level of
accuracy with a single network spanning the entire parameter space as
we can with individual networks at fixed values of Gdcdm, and indeed the
results seem to converge if we generate larger amounts of training data,
which is apparent from the bottom panel of figure 6.6. When increasing
the amount of data much further than shown here, it is necessary to
train the networks for more epochs and perhaps increase the size of
the networks, i.e. hidden layers and nodes in each layer. Given that
we have 15 individual fixed-value networks each with ≥5◊ 104 training
points, 6 hidden layers, and 1024 nodes in each hidden layer, we can
definitely justify making a much larger network instead with close to
≥106 training data points since this would be equally expensive in terms
of computational power. Increasing the number of trainable parameters
in the network also increases the amount of information it can hold,
which eventually will bring the emulation error down to a point where
there will be no discrepancy between class and connect.

6 . 5 . 4 COMPUTATIONAL PERFORMANCE

It is obvious that the computational cost of computing profile likeli-
hoods with connect is much lower than when using class simply
because the evaluation time of a connect network is around 3 orders
of magnitude faster than that of class [2]. Just using connect instead
of class with simulated annealing would therefore be a huge speed-up.
The utilisation of gradients, however, boosts the speed-up even further
since fewer function evaluations are needed. In order to use gradients
in TensorFlow, a computational graph of the entire gradient compu-
tation needs to be constructed, which roughly takes around a minute,
after which the evaluation of both the likelihood and the gradients takes
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around ≥10≠2 seconds. Given that class is allowed to run on multiple
threads, the evaluation time is around ≥1 second. Using the basin-
hopping algorithm described in section 6.4 with the BFGS optimiser as
the local optimiser, each local optimisation requires ≥102 function calls,
each ensemble contains ≥101 walkers, and the temperature is updated
until convergence (usually around 2–4 times). This results in ≥103–104

evaluations, each taking ≥10≠2 seconds. This means that a single point
will usually converge in less than a minute on a single CPU core. The
simulated annealing algorithm requires on the order of ≥104–105 eval-
uations for each point in the profiles presented in this paper, and with
an evaluation time dominated by class, a single point will converge
in roughly a few days if run sequentially. There is, however, some de-
gree of parallelisability, given that multiple chains can be utilised and
class can be parallelised to around 8–10 cores. The di�erent points of
a profile can, of course, be computed completely separately, regardless
of which algorithm is used.

There is also the matter of gathering training data for a neural net-
work if one is starting from scratch, and this process is quite time-
consuming compared to the use cases of a trained network [2]. For
most likelihoods, the network requires around ≥50, 000 points of train-
ing data, which means that class needs to be evaluated ≥50, 000 times.
This is, however, very parallelisable, and it is much faster than doing
an actual MCMC run with class – especially for beyond LCDM where
the number of class evaluations can be as high as 105–106. If one
only seeks to optimise a single point of a (LCDM) model, it might be
better to use class and simulated annealing, but for an entire one-
dimensional profile, it is very beneficial to use connect instead, and
for two-dimensional profiles requiring several hundred points, it might
be necessary to use connect. If one seeks to perform a full frequentist
analysis with triangle plots of one- and two-dimensional profiles, the
task is virtually impossible at this point without using connect.

6 . 6 CONCLUS ION AND OUTLOOK

Using the ensemble basin-hopping algorithm for global optimisation
combined with the BFGS optimiser for local optimisation has been
demonstrated to yield robust, fast, and accurate results when calcu-
lating profile likelihoods from CMB data. By making use of gradients
in the local optimiser, the number of function evaluations can be greatly
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decreased when compared to gradient-free simulated annealing. This,
together with the much faster evaluation time of connect compared
to class, results in speed-ups of several orders of magnitude when con-
structing profile likelihoods. In addition to being fast, the method is
also very robust and accurate, and given the smoothness of the neural
networks, the global optimisations often converge with only a few local
optimisations.

When a neural network has been trained, the profile likelihoods in
any parameter or set of parameters are computationally very inexpen-
sive, and entire triangle plots of profile likelihoods, typically consisting
of more than 5000 individual points in parameter space for which opti-
misation must be performed, are easily computed. Each such point in
the parameter space is independent of all other points, making the opti-
misations embarrassingly parallelisable. The optimisation of each point
takes around a minute on a single modern CPU core. A full triangle
plot could therefore be computed on a normal quad-core laptop in less
than a day.

With fast and easy access to profile likelihoods in cosmology, it is easy
to investigate cosmological models with both Bayesian and frequentist
statistics. Neither of these statistical frameworks can claim superiority
compared to the other, but the two di�erent approaches answer di�erent
questions and complement each other. It is therefore very useful to have
both a posterior and a profile likelihood in order to get the full picture
and draw reasonable conclusions about the given model. The biggest
reason for this not being done frequently in analyses of cosmological
models is that the computational costs of profile likelihoods are much
greater than those of posteriors. Having a fast emulation tool for quick
computations of both posteriors and profile likelihoods makes it much
easier and more appealing to (re)introduce the frequentist approach in
cosmology.

While the optimisation is typically extremely precise, the precision
is limited by the emulation precision of the underlying network. There-
fore, it is quite important to use well-trained and precise networks to
derive profiles consistent with those obtained using class and simu-
lated annealing. In this work, the same neural network has been used
for all profile likelihoods and MCMC related to the LCDM model and
the massive neutrino model due to its simple shape and only modest
volume e�ects. The agreement with profile likelihoods from class is
excellent for these two models and very precise out to several standard
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deviations in parameter space. For the DCDM model, the agreement
with class is also quite good when using either individual networks for
each point in the decay rate, Gdcdm, or an annealed network with a large
amount of training data, even though a small o�set is visible between
the profile likelihoods. This is, however, on a scale of D‰2 ¥ 0.2 which
is much too small to be significant, and parameter inference would not
be a�ected by this small discrepancy.

The training data for the connect neural networks are sampled iter-
atively from the posterior, and with large volume e�ects, this can bias
the accuracy of the network away from regions of maximal likelihood:
Regions with a large volume are sampled much more than regions with
a small volume, even though the small volumes might have better likeli-
hood values. This creates a bias in the networks towards larger volumes
due to these being much more represented in the training data. It is
possible to overcome this problem using a larger network architecture,
more training data, and more training epochs. The training data can
also be weighted in a way that reduces the impact of data points with
larger values of Gdcdm on the total loss during training. However, it
might be beneficial to pursue new ways of sampling training data more
suited for profile likelihoods in future works.

Another thing to consider is the complexity of the likelihood function
at this point. We evaluate a network to get C¸ spectra, perform a
cubic interpolation, and use a TensorFlow version of the Planck lite
likelihood in order to go from cosmological parameters to a likelihood
value, and this makes the computational graph of the gradients quite
large in terms of memory. A way to speed up the computations even
further and increase usability is to directly emulate the likelihood value
of any given likelihood code. We then lose the dependency on having
likelihood codes written in TensorFlow syntax or emulated separately.
Most of the problems highlighted in this paper will most likely cease
to exist with this approach of directly emulating likelihoods. An
additional advantage is that any likelihood emulated in this way (e.g.
BAO, SNI-a, etc.) will automatically lend itself to auto-di�erentiation,
allowing the e�cient combination of basin-hopping and BFGS local
optimisation to be used.

Reproducibility. We have used the publicly available connect frame-
work available at https://github.com/AarhusCosmology/connect_
public to create training data and train neural networks. The frame-

https://github.com/AarhusCosmology/connect_public
https://github.com/AarhusCosmology/connect_public


174 using connect for profile likelihoods

work has been extended with the basin-hopping optimiser and a mod-
ule for computing profile likelihoods. Explanatory parameter files have
been included in the repository in order to easily use the framework and
reproduce results from this paper.
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APPENDIX 6 .A : CHOOS ING POINTS FOR
TWO-D IMENS IONAL PROF ILE L IKEL IHOODS

When computing two-dimensional profile likelihoods, we often need
many more points than what is suitable for one-dimensional profile like-
lihoods, especially if the points are not selected in a clever way. A square
grid with the same ranges as the one-dimensional profile likelihoods is
certainly possible, but not the most feasible in terms of computational
resources. Ideally, we would like to choose a collection of points from
the best-fit region stretching to at least the 3‡ contours (99.73% confi-
dence level) in order to have enough points to accurately compute the
68.27% and 95.45% confidence regions. A reasonable choice of points
is choosing the bin centres of the histogram of an MCMC run (using
e.g. MontePython [63, 101]) with the same connect model where
the bin counts are di�erent from zero. This means that each point will
correspond to a small region where the MCMC sampler has accepted at
least one point. This is what is used to compute the two-dimensional
credible regions of the posterior, and the idea is that the same points
should well represent at least part of the confidence regions of the profile
likelihood. This will almost always be the case unless very significant
volume e�ects are at play.

Figure 6.7 shows the bin centres of one such histogram, and the dif-
ferent panels are coloured according to either the bin counts or the
likelihood value. We can see that the points encapsulate the entire
99.73% credible region but not the entire 99.73% confidence region. The
68.27% and 95.45% confidence regions are, however, well represented.
More elaborate methods for obtaining points in a clever way could be
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Figure 6.7: Bin centres from the histogram in the (Êcdm–H0)-plane from
MontePython. The left panel is coloured according to bin counts of the
histogram, and the dashed 1‡, 2‡, and 3‡ contours are the 68.27%, 95.45%,
and 99.73% credible regions, respectively. The middle and right panels are
coloured according to the likelihood values, and the solid 1‡, 2‡, and 3‡ con-
tours in the right panel are the 68.27%, 95.45%, and 99.73% confidence regions,
respectively. The points from the histogram are suitable for the 68.27% and
95.45% confidence regions, but additional points are required for the 99.73%
confidence region.

employed, but it is worth mentioning that this approach guarantees that
the optimisation is embarrassingly parallelisable.

APPENDIX 6 .B : RECOMPUTING AND ADDING
POINTS

Since the optimisation routine, as described in section 6.4, has some
level of stochasticity, the optimisation might fail by converging on a local
optimum a small fraction of the time. By tweaking precision settings
and hyper-parameters, the rate of failed optimisations can be greatly
decreased, but there will always be some probability of not succeeding.
With the default settings, a complete triangle plot of profile likelihoods
containing ≥103 points to compute will result in only ≥101 failed points.
This is di�cult to detect automatically, but it is very easily seen when
plotting the profile likelihoods. A routine to interactively choose failed
points after plotting them has been implemented, and figure 6.8 shows
the process of choosing points to recompute. These are then gathered
in a file and recomputed. Given the low probability of getting stuck in
a local optimum, the recomputation is almost always successful. In rare
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Figure 6.8: The panels from left to right show the process of recomputing
specific points in the two-dimensional (Êcdm–H0)-profile likelihood if the opti-
miser converges on a local optimum. The points to recompute can be selected
interactively and are then optimised again with a better result.
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Figure 6.9: The panels from left to right show the process of adding extra
points to the two-dimensional (Êcdm–H0)-profile likelihood if the set of points
does not encapsulate the entire contour of a confidence level. New points can
be chosen interactively and are then optimised to complete the 3‡ contour.

cases, a few points need to be recomputed twice, and if a specific point
turns out to be particularly di�cult to optimise, then the precision
settings might need adjustment for that single optimisation. This is
still much more feasible than running with very precise settings for all
points in the profile likelihoods.

If the computed points, chosen according to the process described in
appendix 6.A, do not encapsulate the contour of a specific confidence
level, additional points have to be selected and optimised. This is also
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di�cult to choose automatically, but it is very easy to pick new points
by looking at the contours and previously optimised points. A routine
for interactively choosing new points has also been implemented, and
using this, one can easily choose points based on the location of all
current points and the contours based on those. Figure 6.9 shows the
process of choosing new points since the 99.73% confidence region is
not entirely encapsulated by the previously chosen points. The new
points are gathered in a file and optimised. After the inclusion of the
new optimised points, the contour line looks as it should and is fully
represented by the total set of points.

Ending of reference [3]





7
US ING CONNECT FOR BAYES IAN
EVIDENCES

Another task that has been di�cult with conventional means, is the
process of computing the Bayesian evidence, which is the normalisation
of the posterior and a measure of the entire probability volume. This is a
great quantity for comparing two cosmological models and determining
the one that overall fits the data best. It is usually computed using
nested sampling to find this probability volume, but it requires a huge
number of function evaluations to accurately determine the integral over
the entire parameter space.

The fast evaluation time of an emulator trained with connect is very
beneficial when a large number of evaluations is required, so it comes as
no surprise that Bayesian evidence is much more easily obtained when
utilising the emulator. This chapter presents a paper that I co-authored
using connect for exactly that:

• Camilla T. G. Sørensen, Steen Hannestad, Andreas Nygaard, and
Thomas Tram. “Calculating Bayesian evidence for inflationary
models using CONNECT.” In: (June 2024). arXiv: 2406.03968
[astro-ph.CO].

The paper was a continuation of a master’s project by Camilla Sørensen,
for which I helped with a slight modification to the source code of
connect in order to implement the inflationary code aspic [176] and
sample in inflationary parameters. We extensively investigated the con-
vergence of the nested sampler PolyChord and discovered a default
setting that was not appropriate when using an emulator. This is dis-
cussed in appendix 7.A.

In the paper, several inflationary models are treated and Bayesian
evidences are computed and compared to results in the literature. As
in the case of the former chapter, the paper here also represents a proof
of concept more than an actual study of inflationary models. The di�er-
ence in computational costs between conventional computations of the
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Bayesian evidence and when using the emulator was immense, so this
makes it a particularly good application of connect. A common point
of critique for active learning emulators like connect is that they have
to be retrained for di�erent scenarios. In this case, however, we only
needed to train a single emulator outputting the parameters that aspic
uses as input. This further increases the di�erence in computational
costs if all results were to be repeated without emulation.

While my contribution to the paper was primarily on the use of con-
nect as well as discussions regarding the convergence issues, I find the
results of the paper relevant to this thesis, and I will therefore include
the paper in its entirety.

Beginning of reference [6]

Calculating Bayesian evidence for inflation-
ary models using CONNECT

Camilla T. G. Sørensena, Steen Hannestada, Andreas Ny-
gaarda, Thomas Trama

aDepartment of Physics and Astronomy, Aarhus University, DK-8000
Aarhus C, Denmark

Abstract. Bayesian evidence is a standard tool used for comparing
the ability of di�erent models to fit available data and is used exten-
sively in cosmology. However, since the evidence calculation involves
performing an integral of the likelihood function over the entire space
of model parameters this can be prohibitively expensive in terms of
both CPU and time consumption. For example, in the simplest LCDM
model and using CMB data from the Planck satellite, the dimensional-
ity of the model space is over 30 (typically 6 cosmological parameters
and 28 nuisance parameters). Even the simplest possible model requires
O(106) calls to an Einstein–Boltzmann solver such as class or camb
and takes several days.

Here we present calculations of Bayesian evidence using the connect
framework to calculate cosmological observables. We demonstrate that
we can achieve results comparable to those obtained using Einstein–
Boltzmann solvers, but at a minute fraction of the computational cost.
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As a test case, we then go on to compute Bayesian evidence ratios for
a selection of slow-roll inflationary models.

In the setup presented here, the total computation time is completely
dominated by the likelihood function calculation which now becomes
the main bottleneck for increasing computation speed.

7 . 1 INTRODUCTION

Over the past three decades, a vast amount of cosmological data has
yielded unprecedented knowledge of the physical model of our universe.
The standard LCDM model is described in terms of relatively few free
parameters and provides a very good fit to almost all observational
data. Various statistical techniques have been used to infer the value of
the fundamental physical parameters of the model, including Bayesian
parameter inference through marginalisation of the likelihood function
(see e.g. [101, 102, 156]), and maximum likelihood techniques in the form
of profile likelihoods (see e.g. [7, 8, 146, 177, 178]). Another extremely
useful tool is the calculation of Bayesian evidence when comparing dif-
ferent models (see e.g. [179] for a review). However, a major obstacle in
evidence calculation is that it requires integration of the likelihood func-
tion over the entire prior volume, which, for high dimensional parameter
spaces, can become prohibitively expensive.

Packages based on the nested sampling approach to likelihood inte-
gration [180, 181] are by now available for carrying out such analyses in
a relatively e�cient manner. PolyChord [182] and MultiNest [183]
are among the most commonly used within the field of cosmology (see
e.g. [184] for a recent review of methods and packages). However, even
with these packages, a reliable evidence calculation typically still re-
quires millions of evaluations of the likelihood function. Each such evalu-
ation requires running an Einstein–Boltzmann solver such as class [27]
or camb [159] to calculate the relevant cosmological observables and
takes on the order of tens of seconds on a single CPU core (although a
significant speed-up can be achieved in cases where the model parameter
space can be split in “slow” (cosmological) and “fast” (nuisance) param-
eters). This makes evidence calculations extremely expensive, both in
terms of time and computational resources.

A way to mitigate this could be to use a cosmological emulator instead
of the Einstein–Boltzmann solver code. Recent years has seen a surge
in popularity of such emulators and they have been applied in many dif-
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ferent ways. The most common kinds of emulators are either based on
Artificial Neural Networks [2, 109, 113, 157] or Gaussian Processes [122,
158], both with their respective advantages and drawbacks. The ap-
plications range from standard Bayesian marginalisation to frequentist
profile likelihoods [3], and Refs. [185–187] furthermore employed emu-
lators to approximate Bayesian evidence using posterior samples and a
modification of the harmonic mean estimator [188]. While approxima-
tions of the Bayesian evidence are useful to roughly compare cosmologi-
cal models with very di�erent evidence, models that only di�er slightly
need better estimates (e.g. from nested sampling) in order to perform a
meaningful comparison. Ref. [113] demonstrated that evidence compu-
tations could indeed be accurately computed using an emulator, albeit
for the vanilla LCDM-model and using large-scale structure likelihoods
and/or Planck Lite.

In this paper we test how the connect [2] framework fares on evi-
dence calculations by performing Bayesian model comparison of a vari-
ety of di�erent slow roll inflationary models using the publicly available
PolyChord package [182]. Accurate profile likelihoods require the em-
ulator to be very accurate around the region of best fit, but in general
they do not require very accurate emulation of other regions in the
parameter space [3]. Marginalisation, on the other hand, requires inte-
gration over regions of parameter space. While this typically requires
somewhat less precision around the absolute best fit, it requires the
emulation to be reasonable over substantially larger regions. Evidence
calculations are even more extreme in this regard since each evidence
calculation requires integrating the likelihood function over the entire
prior volume.

Given that evidence calculations are extremely time consuming due
to the very large number of function evaluations required (typically mil-
lions of class or camb evaluations, each requiring tens of CPU core
seconds), it is of substantial interest to investigate whether the con-
nect emulator can also be used for this purpose. In order to compare
our results to model comparisons using standard Einstein–Boltzmann
solvers, we use the same prior ranges and model parameterisations as
in Ref. [189].

Finally, since we are using inflationary model selection as our test
case, we must of course credit the pioneering work in Refs. [190, 191].
(See also Ref. [192] for a very recent update.) In these papers, the
authors computed an e�ective likelihood by integrating out all non-
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inflationary parameters. A neural network was then trained to emulate
this e�ective likelihood, allowing the authors to perform an exhaustive
Bayesian model-comparison of most slow-roll inflationary models in the
LCDM-model. Furthermore, we must also mention the early work done
on inflationary model selection in Ref. [193].

The paper is structured as follows: In section 7.2 we provide an
overview of both the connect framework and of Bayesian evidence
calculations. Section 7.3 contains a description of how the connect
neural network emulator is constructed and validated using standard
inflationary observables. Section 7.4 is then devoted to a description of
how we implement the aspic framework for describing slow-roll infla-
tionary models and converting fundamental inflationary parameters to
observables, and section 7.5 contains our numerical results. Section 7.6
contains our runtime considerations. Finally, we provide our conclusions
in section 7.7.

7 . 2 THE CONNECT FRAMEWORK AND
BAYES IAN EVIDENCE

The connect framework for emulation of cosmological observables has
been tested extensively for cosmological parameter inference, using both
Bayesian marginalisation and frequentist profile likelihoods [2, 3]. A
main advantage of connect is that it contains both an emulator of
cosmological observables as well as the framework needed to build and
train the network. This means that emulators of new and non-standard
cosmological models can easily be built and used to run cosmological
parameter analyses within a single environment. connect trains a neu-
ral network based on training data sampled iteratively to best represent
the likelihood function. This ensures that the neural network is most
precise where the likelihood is large, which makes it ideal for parameter
inference. The training data is gathered using the fast Planck Lite like-
lihood [127]. The reason is that training requires a very large number
of likelihood evaluations, which in the case of the full Planck likelihood
would be prohibitively expensive. Because Planck Lite is somewhat less
constraining than the full Planck likelihood, this gives us a set of train-
ing data that is more widely spread and this (along with a high sampling
temperature, which guarantees adequate coverage of the training data
set), yields a set of training data that can accurately represent several
combinations of cosmological data sets (as long as either the full Planck
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likelihood, Planck Lite or similar CMB data is included) without the
need to retrain the network. Furthermore, connect is both the emu-
lator as well as the procedure that trains the emulator. This makes it
easy to quickly train a new physics model.

However, parameter inference as a statistical technique is designed
for determining parameter values within a given model, assuming the
model to be correct, i.e. it is not designed to qualitatively compare how
well di�erent models fare in fitting the available data. For this purpose
other techniques, such as the Akaike information criterion in frequentist
analysis (see e.g. Ref. [194]) or evidence in Bayesian analysis, are used
instead. The Akaike information criterion relies on maximising the like-
lihood function and is therefore closely related to the profile likelihood
technique already tested extensively with connect [3]. However, the
Bayesian evidence calculation requires integrating the likelihood func-
tion over the entire prior volume, and testing the precision (and speed)
with which connect is able to perform this calculation is the main
purpose of this work.

The Bayesian evidence has been calculated with the code Poly-
Chord [182, 195], which uses a version of nested sampling [180] to
calculate the evidence. The code is run from within the MCMC sam-
pler MontePython [63, 101] with either class or connect as the
cosmological theory code. We finally note that it is only necessary to
train one model with connect, because all the inflationary parameters
for the di�erent inflationary models can be mapped to the same physical
parameters.

7 . 3 VAL IDATION OF CONNECT FOR EVIDENCE
COMPUTATION

A natural first step is to validate results for Bayesian evidence calcu-
lated using connect versus brute force calculations based on class
(or camb). The accuracy of connect has been investigated thor-
oughly for both Bayesian parameter inference and profile likelihoods
and found to be more than su�ciently accurate for such analyses, even
in very extended parameter spaces (see [2]). However, the calculation of
Bayesian evidence typically lends more weight to regions in parameter
space where the likelihood is only moderately good. This means that
one cannot directly infer from these previous tests that connect per-
forms Bayesian evidence calculations at the required level of precision.



using connect for bayesian evidences 185

Parameter Minimum value of prior Maximum value of prior

100◊ Êb 1.9 2.5

Êcdm 0.095 0.145

100◊ ◊s 1.03 1.05

ln 1010
As 2.5 3.7

·reio 0.01 0.4

ns 0.94 1.0

–s ≠0.3 0.3

r 0.0 0.3

Table 7.1: The parameter bounds used to validate the results for Bayesian
evidence calculated using connect versus calculations based on class.

To test this, we calculate evidence in models based on LCDM, but
with an extended inflationary component. The basis is the simplest in-
flationary slow-roll approximation in which the primordial fluctuations
are adiabatic, Gaussian, and purely scalar and can be parameterised
using only the amplitude, As, and the spectral index, ns. Beyond this,
we have added the tensor-to-scalar ratio, r, as well as the e�ective curva-
ture of the primordial spectrum, –s, so that the primordial fluctuation
spectrum is fully described by four parameters1 (As, ns, r, and –s) in
addition to the parameters needed to describe the content of the flat
LCDM model, i.e., Êb,Êcdm, ◊s, ·reio.

The parameter bounds for 100◊ Êb, Êcdm, 100◊ ◊s, ln 1010
As, and

·reio is the same as in Ref. [189]. The bounds for these parameters as
well as the bounds for ns, –s, and r can be seen in table 7.1.

Since our main goal is to demonstrate the feasibility of using the
connect framework for Bayesian evidence calculations, we will use the

1 Validating connect on this particular model has the advantage that since all the
slow-roll models to be investigated can be mapped to the set of e�ective inflationary
“observables”, As,ns,–s, r, we can infer that our set-up will also be valid for evidence
computations using fundamental inflationary field parameters.
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Case logZ Likelihood calls CPU hours
used

PolyChord
with class

≠1860.4± 0.54 1, 419, 152/
115, 988, 382

30,000

PolyChord
with connect

≠1861.1± 0.55 1, 569, 491 125

Table 7.2: The Bayesian evidence calculated with PolyChord using both
connect and class and 300 live points. The number of likelihood calls
are shown for the “slow”/“fast” parameters for class while this oversampling
feature was turned o� for connect. Note that the log-evidence and the error
estimates are comparable despite the class-run using ≥100 times more total
likelihood calls. The last column shows the CPU core-hours used in each
PolyChord run.

same data combination as in Ref. [189]. However, it should be stressed
that evidence calculations are notoriously hard to compare because ex-
act numbers are extremely sensitive to hyperparameter choices such as
e.g. prior volume. Therefore, it is not to be expected that a direct,
quantitative comparison can be made between our results and those of
[189]. Our data sets therefore in all cases consist of the full Planck 2018
TTTEEE+lowE data [127], the Planck 2018 lensing data [196], as well
as the BICEP Keck 2015 data [197].

In the standard setting for PolyChord when run through Mon-
tePython [101] there is a distinction between “slow” (cosmological)
and “fast” (nuisance) parameters. The PolyChord wrapper for Mon-
tePython is hard-coded to use 0.75 of the total wall time of the com-
putation for integration of the cosmological parameter space and 0.25
on the nuisance parameter space. Given the di�erence in execution
time between class and the likelihood calls this typically leads to at
least an order of magnitude more evaluation points in the nuisance
parameter space than in the cosmological parameter space, but since
the nuisance parameter space typically has much higher dimension the
standard setting for PolyChord with MontePython provides a rea-
sonable division between the two sets of parameters.

However, when PolyChord is run using connect this division be-
tween parameter spaces becomes catastrophically wrong. The reason is
that all function calls in this case takes the same time because CPU time
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Figure 7.1: The posteriors for the physical and inflationary parameters with
the bounds given in table 7.1. The contours correspond to 68.3%, 95.5%, and
99.7% credible intervals.

is entirely dominated by the time taken for likelihood calls. This means
that the nuisance parameter space becomes severely under sampled and
only if a much larger number of live points is used can convergence be
achieved. The solution to this problem is to let PolyChord use its
normal default setting in which all parameters are treated equally. In
appendix 7.A we provide a more detailed discussion of the problem and
its solution.

Using the new setting for PolyChord with connect, the Bayesian
evidence for the above model is then calculated with PolyChord using
both connect and class using 300 live points in both cases. The
values of the evidences can be seen in table 7.2 together with the total
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number of likelihood calls in both cases. The resulting posteriors for
the physical and inflationary parameters can be seen in figure 7.1.

In appendix 7.A we also discuss convergence in terms of the number
of live points used. Although we do find that even using as little as 300
live points is enough to obtain robust results, the CPU requirements of
the connect-based runs are small enough that we opt to run all our
inflationary model evidence calculations using 1200 live points.

7 . 4 INFLAT IONARY MODEL
PARAMETERISAT ION

In order to calculate Bayesian evidence for di�erent inflationary models
and their fundamental parameters, we have used the publicly available
code aspic [176]. aspic takes the inflationary model and its inflation
parameters as input and calculates ns, –s, and r, which can then be
given as input to a neural network trained by connect. The neural
network then returns observables that can be used to compute a likeli-
hood based on the given parameters of the inflationary model. Bayesian
evidence is then computed using PolyChord.

aspic is written in Fortran, so in order to use the code with
connect and MontePython, we have written a Python wrapper2,
PyAspic for aspic that can be called by connect.

The inflationary models used in this article have the following names
in aspic: Higgs Inflation (HI), Large Field Inflation (LFI) with p = 2
and p = 4, Natural Inflation (NI), Loop Inflation (LI), and Colemann-
Weinberg Inflation (CWI). The models, their potentials, as well as their
names in Ref. [189] can be seen in table 7.3.

The bounds for the physical parameters (100◊ Êb, Êcdm, 100◊ ◊s,
ln 1010

As, and ·reio) are the same as for the validation of the connect
network, and they can be seen in table 7.1. The inflation parameters
and their bounds are ln flreh with bounds ln(1 TeV)4 and ln flend. The
model NI has the parameter f with bounds in logspace been given
as 0.3 Æ ln f Æ 2.5, the model LI has the parameter – with bounds
in logspace given as ≠2.5 Æ ln– Æ 1.0, and the model CWI has a
parameter – held constant at 4e as well as the parameter Q with bounds
0.00001 Æ Q Æ 0.001. Furthermore, the model LFI also has a parameter
p, and this model is run twice with p held constant at p = 2 and p = 4

2 Available at https://github.com/AarhusCosmology/PyAspic.

https://github.com/AarhusCosmology/PyAspic
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aspic model Model name in
Ref. [189]

Potential

Higgs Inflation
(HI)

R+R
2/(6M2) M

4
⇣
1≠ e

≠
Ô

2/3„/Mpl
⌘2

Large Field
Inflation (LFI2)

Power-Law
Potential

M
4
⇣

„

Mpl

⌘2

Large Field
Inflation (LFI4)

Power-Law
Potential

M
4
⇣

„

Mpl

⌘4

Natural Inflation
(NI)

Natural Inflation M
4
h
1 + cos

⇣
„

f

⌘i

Loop Inflation
(LI)

Spontaneously
broken SUSY

M
4
h
1 + – ln

⇣
„

Mpl

⌘i

Colemann-
Weinberg
Inflation (CWI)

Not in the reference M
4

1 + –

⇣
„

Q

⌘4
ln
⇣
„

Q

⌘�

Table 7.3: The inflationary models used in this paper. See the text for details
on the parameters and their bounds

respectively. The e�ective equation of state w is 1/3 for LFI with p = 4
and 0 for all other models.

7 . 5 NUMERICAL RESULTS

After having validated the connect framework for the purpose of cal-
culating evidences, we now proceed to calculate evidence ratios for the
selection of actual slow-roll models discussed in the previous section. All
the inflationary models given in table 7.3 are run from MontePython
with PolyChord, connect, and aspic. The number of live points for
the nested sampling algorithm is 1200 for all models3. The calculated
evidence for all models with respect to the calculated Bayesian evidence
for Higgs Inflation can be seen in table 7.4.

3 As discussed in appendix 7.A, even 300 live points is enough to calculate reliable
evidences, but the calculation is su�ciently fast that we can use 1200 live points
and thereby also achieve a somewhat smaller statistical uncertainty on the obtained
results.
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aspic model lnB

Large Field Inflation (LFI2) ≠8.8± 0.4

Large Field Inflation (LFI4) ≠51.2± 0.4

Natural Inflation (NI) ≠4.6± 0.4

Loop Inflation (LI) ≠4.7± 0.4

Colemann-Weinberg Inflation (CWI) ≠19.7± 0.6

Table 7.4: The calculated Bayesian evidence of the inflationary models with
respect to the calculated Bayesian evidence for Higgs inflation. In [189], cor-
responding values for LFI2, LFI4, NI, and LI are -11.5, -56.0, -6.6, and -6.8
respectively. Coleman-Weinberg inflation was not tested in that work. The
uncertainties on the values from Ref. [189] is quoted as 0.3 in the article using
512 live points (note that estimated statistical uncertainties are typically sig-
nificantly smaller for the same number of live points when using class because
of the very large number of likelihood evaluations in the nuisance parameter
space).

When comparing Bayesian evidence from di�erent models, the Jef-
freys scale is often used [198]. Depending on the value of the Bayes
factor between two models, the scale helps interpret if the strength of
the evidence is either inconclusive, weak, moderate, or strong for one
model compared to the other [179]. The threshold values for Je�reys
scale can be seen in table 7.5.

Using table 7.5 to interpret the results given in table 7.4, it can be
seen that Large Field Inflation with both p = 2 and p = 4 as well
as Colemann-Weinberg Inflation are strongly disfavoured compared to
Higgs Inflation. Natural Inflation and Loop Inflation both have a value
of the Bayes factor that puts them right on the threshold between being
moderately or strongly disfavoured compared to Higgs Inflation. Taking
into consideration the uncertainty of ±0.9 for both models, it becomes
impossible to put them into one category, and it is therefore concluded
that the two models are moderately to strongly disfavoured compared
to Higgs Inflation.
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Comparing our results with Ref. [189], we find that they are in quali-
tative agreement regarding which models that are strongly disfavoured
compared to Higgs Inflation. We note that the values for the Bayes fac-
tor found here are systematically more negative than the corresponding
values in [189], and in most cases deviate more than the estimated sta-
tistical uncertainty. We stress that this is not due to problems related to
the connect emulation, but is most likely related to small di�erences
in the prior volume and/or parameterisation.

Ref. [192] have also calculated the Bayesian evidence for di�erent
inflationary models using aspic and a neural network, but they have
trained their neural network on the e�ective likelihood, where all non-
inflationary parameters have already been integrated out. They have
used some di�erent data sets than us, and the priors are not the same.
But it is still possible to compare our results with theirs for two models:
Large Field Inflation with p = 2 and Natural Inflation (even though
their prior on f is not identical to ours). They get lnBLFI2 = ≠7.35
and lnBNI = ≠4.74, which is in good agreement with our values seen
in table 7.4.

7 . 6 RUNTIME CONS IDERATIONS

The main reason for calculating Bayesian evidence with connect in-
stead of class is that it is much faster even though we first have to train

| lnB| Odds Probability Strength of evidence

<1.0 <3:1 <0.750 Inconclusive evidence

1.0 ≥3:1 0.750 Weak evidence

2.5 ≥12:1 0.923 Moderate evidence

5.0 ≥150:1 0.993 Strong evidence

Table 7.5: The strength of the Bayesian evidence interpreted by using the
Je�reys scale. The threshold values for the odds are 3:1, 12:1, and 150:1,
which represents weak, moderate and strong evidence respectively. The table
is taken from Ref. [179].
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a neural network for the model. This can clearly be seen by comparing
the time it took to calculate the Bayesian evidence in section 7.3 with
class and the time it took to train the neural network and calculate the
evidence with connect respectively. The calculation of the Bayesian
evidence using class took ≥30,000 CPU-hours on Intel Xeon E5-2680
v2 CPUs, whereas the calculation of the evidence with connect (for
LCDM+–s+r) took only ≥125 CPU-hours on Intel Xeon Gold 6230
CPUs. The di�erence in hardware might have a small e�ect, but it
is most likely not more than a factor of ≥2. The training of the neu-
ral network (including sampling and calculation of training data) took
≥150 CPU-hours, so even with this included, the calculation of the
Bayesian evidence is still much faster with connect than with class.
Furthermore, the evidence for the di�erent inflationary models all took
less than ≥3500 CPU hours combined to calculate with connect and
1200 live points, which is considerably less than what was required for
LCDM+–s+r with class despite the inflationary models being more
complicated as well as having 4 times as many live points.

When calculating the Bayesian evidence using class, the dominant
part of the calculation is the evaluation of class itself. By using con-
nect instead, the evidence can be calculated without evaluating any of
the hundreds of coupled di�erential equations in class, and the limit-
ing factor therefore becomes the Planck likelihood. To train the neural
network using connect, class still needs to calculate the Einstein–
Boltzmann equations, but the number of times class is called during
the training is much less than the number of times it is called when
calculating the evidence without a neural network. When using class
to calculate training data for the neural networks, the total number of
evaluations is ≥50,000, which is 30 times fewer evaluations than the
PolyChord run using class.

In summary, performing an evidence calculation using class takes
X ≥ 30, 000 CPU-hours, while an evidence calculation using connect
requires two steps: First, training data is generated iteratively and the
neural network is trained and then the evidence calculation proceeds.
The first step takes X1 ≥ 150 CPU-hours, while the second step takes
X2 ≥ 125 CPU-hours. Because the model can be reused for di�erent in-
flationary models and di�erent dataset combinations, the combined run-
time formmodels and d dataset combinations will beXtot = m◊ d◊X

when using class but only Xtot = X1 +m◊ d◊X2 when using con-
nect. Thus, if we consider the case were we are computing Bayes
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factors for a handful of models with a few dataset combinations, the
training time becomes completely negligible, and connect delivers a
speedup factor of ≥240 compared to class.

7 . 7 D I SCUSS ION AND CONCLUS IONS

We have tested the use of the connect framework for calculating
Bayesian evidences in cosmology using inflationary models as a test
case. connect has previously been shown to emulate cosmological
observables at a level of precision more than adequate for perform-
ing Bayesian parameter inference and for computing profile likelihoods.
However, since the calculation of Bayesian evidence typically puts more
weight on regions of parameter space in which the likelihood is only
moderately good it cannot a priori be assumed that connect delivers
suitable precision for this task.

Using the standard set of “observational” parameters describing slow-
roll inflation models, As,ns,–s, r, we found that running PolyChord
with default settings through MontePython leads to severe under-
sampling of the nuisance parameter space when we use connect rather
than class. We traced this problem to a default setting in the Poly-
Chord wrapper which splits parameters into “slow” (cosmological)
and “fast” (nuisance) parameters, and devotes 0.75 of the wall time
to sampling the slow parameter space. When running PolyChord
with class this leads to a suitable division of labour between slow and
fast parameters. However, when run with connect it leads to the men-
tioned under sampling of nuisance parameters and poor convergence of
the computation. In fact, the connect-based runs typically required
an order of magnitude more live points to achieve the same precision as
the class-based runs.

To fix the problem we ran PolyChord with all parameters treated
equally (i.e. no splitting into “slow” and “fast” parameters) and found
that results become compatible with class-based results with the same
number of live points, thus validating that connect can replace the
use of class for evidence computations. This in turn reduced runtime
tremendously with the evidence calculations now being completely dom-
inated by the likelihood calls.

Having validated the connect framework for this purpose we then
proceeded to calculate Bayesian evidence for a number of slow-roll in-
flationary models by using the aspic library to convert inflationary
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parameters to observable inflationary parameters. We found evidence
ratios between models very similar to those reported in Ref. [189] and
in all cases within the same evidence strength brackets. Furthermore,
all the calculations of the Bayesian evidence was done with 1200 live
points and on 24 tasks with 1 CPU for each task, and the calculations
were done within 24 hours. Using a neural network therefore drastically
reduces the runtime for these calculations, making it possible to easily
use Bayesian evidence as a tool to compare di�erent theoretical models.

Based on the tests carried out and presented here we are therefore
confident that connect can be used for calculations of Bayesian
evidence in cosmology, vastly reducing the often prohibitive runtimes
of such calculations. This will make it possible to start using Bayesian
evidence as a tool in theoretical cosmology. Right now, theoretical
cosmology is mostly done using Bayesian and frequentist parameter
estimation, but it will now be possible to also use Bayesian evidence
and thereby compare how good one cosmological model is compared to
another cosmological model.

Reproducibility. We have used the publicly available connect frame-
work available at https://github.com/AarhusCosmology/connect_
public to create training data and train neural networks. To cal-
culate the Bayesian evidence, we have used the publicly available
program PolyChord available at https://github.com/PolyChord/
PolyChordLite as well as the program MontePython publicly
available at https://github.com/brinckmann/montepython_public.
Lastly, we have used the program aspic to calculate the inflationary
models and their fundamental parameters. This has been done with
the publicly available Python wrapper Pyaspic available at https://
github.com/AarhusCosmology/PyAspic. aspic is publicly available at
http://cp3.irmp.ucl.ac.be/~ringeval/upload/patches/aspic/.
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Case Bayesian evidence (logZ) “slow”/“fast”
likelihood calls

PolyChord
with class

≠1907.4± 0.92 398,478 / 25,689,051

PolyChord
with connect

≠1898.2± 1.43 469,336 / 329,299

Table 7.6: The Bayesian evidence, as well as the number of likelihood evalu-
ations, for the LFI4 model calculated with PolyChord using both connect
and class, both using the standard MontePython settings for PolyChord
in which parameters are split in “slow” and “fast” categories and 0.75 of the
total wall time is spent integrating the slow parameter space. This test run
was performed using 100 live points.

from VILLUM FONDEN. C.S. and S.H. were supported by a grant
from the Danish Research Council (FNU).

APPENDIX 7 .A : CONVERGENCE ISSUES

In this appendix we validate the use of PolyChord with connect
and discuss convergence in terms of the number of live points. As we
discussed in section 7.3, the default setting for PolyChord in Mon-
tePython leads to severe undersampling of the nuisance parameter
space when using connect4. This undersampling leads to a bias in the
ensemble mean log-evidence, unless a very large number of live points
is being used, as shown in figure 7.2.

That the nuisance parameter space becomes under sampled with stan-
dard settings is very evident from table 7.6 in which it can be seen
that even though the number of evaluations in the slow parameters
are comparable in the two cases, the number of evaluations in the fast
parameters are a factor of 80 smaller when using connect.

Once diagnosed this problem can be easily fixed by disabling the
oversampling feature in PolyChord.py and treating all variables demo-
cratically. Running PolyChord with connect using these settings

4 There are other situations where the default behaviour can be sub-optimal, see e.g.
the issue at https://github.com/brinckmann/montepython_public/issues/374.

https://github.com/brinckmann/montepython_public/issues/374
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Figure 7.2: Evidence calculation of the the phenomenological (As,ns,–s, r)-
model using PolyChord. We compare class, connect with default Mon-
tePython, and connect with our corrected MontePython. Without the
fix, 4800 live points are needed to obtain a converged result, whereas class
already seems converged when using 300 live points. With the fix to Mon-
tePython, connect is in agreement with class and is no longer biased.

produces a Bayesian evidence of logZ = ≠1906.2± 0.9064 using a total
of 2,035,411 likelihood evaluations.

In order to further test convergence of PolyChord with both stan-
dard and “new” settings we have performed a series of test runs for the
the phenomenological (As,ns,–s, r)-model, varying the number of live
points. The results are shown in figure 7.2 from which we can conclude
that connect with standard PolyChord settings requires (at least)
4800 live points to achieve the same precision as class-based runs with
300 live points. With the fix in place the connect-based runs converge
as quickly as the class-based runs in terms of number of live points,
but using a smaller total number of likelihood evaluations.

End of reference [6]



8
IMPROVEMENT OF TRAIN ING DATA
US ING HYPERSPHERE SAMPL ING

As stressed several times during this thesis, proper selection of train-
ing data is vital for a good emulator. If the training data does not
accurately represent the relevant parts of the parameter space, the em-
ulator cannot be expected to perform well in the regions where it has
little to no training data. While Latin hypercubes have been a stan-
dard for choosing training data in cosmological emulation, this is not
very e�cient when large parts of the parameter space are irrelevant to
the cosmological analysis in question. The iterative sampling process of
connect’s active learning scheme solves this problem, but the process
of collecting training data can be a bit slow, especially in cases where
the initial points (from a sparse Latin hypercube) are poorly chosen.

A way to accommodate this problem such that the training data is
more localised around the region of interest while simultaneously being
easily computed is described in the following paper, which is presented
in this chapter in its entirety:

• Andreas Nygaard, Emil Brinch Holm, Steen Hannestad, and
Thomas Tram. “Cutting corners: hypersphere sampling as a new
standard for cosmological emulators.” In: JCAP 10 (2024), p. 073.
doi: 10.1088/1475-7516/2024/10/073. arXiv: 2405.01396 [astro-
ph.CO].

This paper presents the idea of hypersphere sampling which had al-
ready been discussed to some extent in the literature. We implemented
a new algorithm for e�ciently obtaining a uniform hypersphere of train-
ing data points with the possibility of transforming the points using a
covariance matrix if one is available. This way, one is rewarded with
additional e�ciency if extra information is available, but still without
any known correlations, the hypersphere proves superior to a Latin hy-
percube for inference purposes.
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This has been implemented as the new standard for the initial training
data in connect’s iterative sampling of training data, and it has greatly
improved the convergence of the iterations.

Beginning of reference [4]

Cutting corners: Hypersphere sampling as a
new standard for cosmological emulators

Andreas Nygaarda, Emil Brinch Holma, Steen Hannestada,
Thomas Trama

aDepartment of Physics and Astronomy, Aarhus University, DK-8000
Aarhus C, Denmark

Abstract. Cosmological emulators of observables such as the Cos-
mic Microwave Background (CMB) spectra and matter power spectra
commonly use training data sampled from a Latin hypercube. This
method often incurs high computational costs by covering less relevant
parts of the parameter space, especially in high dimensions where only
a small fraction of the parameter space yields a significant likelihood.

In this paper, we make use of hypersphere sampling, which instead
concentrates sample points in regions with higher likelihoods, signifi-
cantly enhancing the e�ciency and accuracy of emulators. A novel al-
gorithm for sampling within a high-dimensional hyperellipsoid aligned
with axes of correlation in the cosmological parameters is presented.
This method focuses the distribution of training data points on areas of
the parameter space that are most relevant to the models being tested,
thereby avoiding the computational redundancies common in Latin hy-
percube approaches.

Comparative analysis using the connect emulation tool demon-
strates that hypersphere sampling can achieve similar or improved emu-
lation precision with more than an order of magnitude fewer data points
and thus less computational e�ort than traditional methods. This was
tested for both the LCDM model and a 5-parameter extension including
Early Dark Energy, massive neutrinos, and additional ultra-relativistic
degrees of freedom. Our results suggest that hypersphere sampling
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holds potential as a more e�cient approach for cosmological emulation,
particularly suitable for complex, high-dimensional models.

8 . 1 INTRODUCTION

Using machine learning techniques to emulate observables such as CMB
spectra or matter power spectra predicted by a cosmological model has
become increasingly popular in recent years, mainly due to the high
computational cost of directly computing the observables using stan-
dard tools (e.g. Einstein–Boltzmann solvers or N -body codes). For
example, computing Bayesian evidence ratios between di�erent cosmo-
logical models typically requires calculating observables in millions of
points in the space of cosmological parameters, and using e.g. standard
codes such as class [27] or camb [159] therefore leads to millions of
CPU core-seconds being consumed.

This CPU demand can be reduced by orders of magnitude using emu-
lators, often without sacrificing precision. However, there is still a very
substantial computational cost related to generating training data, i.e.
the predicted observables at each point in the cosmological parameter
space, for the emulator. This means that it is important that the train-
ing data represent the parameter space well, and necessitates a good
balance between the amount of training data points and the relevance
of each point.

A simple choice is to use Latin hypercube sampling of training points
on some predefined (prior) volume of parameter space. This has the
advantage of being simple to implement and assigning equal weight to
all regions within the hypercube. Examples of this method used in cos-
mological emulator training include e.g. the emulators of Refs. [103, 113,
157, 199]. One could, however, ask why the feature of equal weight to all
regions within the prior volume is desired, since most of the volume in
higher dimensions is in the corners of the hypercube. Points in such re-
gions are almost always associated with a very poor likelihood and when
using the emulator to calculate for example profile likelihoods, Bayesian
parameter inference, or Bayesian evidence, the emulator’s ability to ac-
curately calculate observables in these corner regions is wasted. This
leads to a very ine�cient use of training data and puts substantially
higher demands on the number of points in the training data. Some
emulators, such as Refs. [122, 158, 200, 201], have circumvented this by
using Gaussian processes (GP) instead of artificial neural networks. The
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idea behind this is to let the acquisition function of the GP decide which
new point to include in the training data based on where the emulation
is uncertain or unexplored. The downside of this is the inferior scalabil-
ity of GPs compared to neural networks, i.e. only a limited number of
dimensions and amount of training data is feasible. Typically, Gaussian
processes are therefore used in situations where calculating each indi-
vidual training point becomes extremely expensive (a good example is
emulation of observables based on N -body simulations).

In this paper, we illustrate that a better approach when dealing with
neural networks is to sample uniformly in a hypersphere, which avoids
the large amount of irrelevant points in the corners of the hypercube.
This, however, requires prior knowledge about where the region of in-
terest is located in the parameter space, but similar prior knowledge is
also needed to construct a Latin hypercube. This kind of hypersphere
(or hyperellipsoid) sampling has been used by Refs. [109, 133] but with
a rather suboptimal way of sampling by rejecting points from a (Latin)
hypercube that are outside the hypersphere. Ref. [103] used a normal
Latin hypercube for the training data but sampled their validation data
from a random distribution with an ellipsoidal mask, since rejection
from a Latin hypercube was deemed too ine�cient. In high dimensions,
this becomes impossible since it requires a Latin hypercube too large
to fit in the memory of a computer. There are, however, ways to ef-
fectively sample points within a hypersphere, if one omits the “Latin”
requirement.

In section 8.2, we explore di�erent sampling strategies and describe a
novel, e�cient method for sampling uniformly from a high-dimensional
hypersphere. Next, we compare performances using the publicly avail-
able emulation tool connect [2] in section 8.3, and give our conclusions
and outlook in section 8.4.

8 . 2 SAMPL ING METHODS FOR TRAIN ING DATA

When building an emulator of Einstein–Boltzmann solvers such as
class [27] or camb [159], one generates the training data by running
the solver on a selected set of points in parameter space, giving cor-
responding pairs of cosmological parameters and their corresponding
observables at each point. This leaves open the choice of the set of pa-
rameter space points at which to generate the data. There are di�erent
ways to sample training data depending on what the objective of the



hypersphere sampling of training data 201

network is. Ultimately, a neural network is only as good as its training
data, and so a region of sparse data leads to the network having to in-
terpolate over larger distances in this part of the parameter space, while
regions of dense data leads to very accurate emulation in these regions.
One’s choice of training data might depend on various factors such as
the number of points one is willing to compute (if each point requires
expensive computations such as N -body codes, it might not be many)
or whether or not the network should be more precise in some regions
than others.

In this section, we will go through di�erent ways one might sample
data from a hypercube and a hypersphere, and present some of the
strengths and drawbacks of each.

8 . 2 . 1 LAT IN HYPERCUBE SAMPL ING

The idea behind Latin hypercube sampling [202] is to create a set of
data that is close to uniformly distributed throughout a hypercube with-
out requiring a dense grid of points that scales exponentially with the
dimensionality. When sampling a Latin hypercube of N points, each
dimension is split into N even segments, and the points are then placed
within the resulting N

d cells, where d is the dimensionality, in a way
that ensures that only a single cell in a set of d rows is occupied by a
point.

The Latin hypercube sampling does not, however, guarantee uniform
sets of training data, given that having all points on a diagonal line
also constitutes a Latin hypercube, but in practice, one will always get
something very close to uniformity for a large amount of data points
(N > 103). A variant of Latin hypercube sampling called orthogonal
sampling furthermore ensures uniformity in the hypercube by splitting
the cube into smaller segments [203]. This will result in uniformity on
large scales (similar to the size of the Latin hypercube), but points on
smaller scales tend to look more randomly distributed. This is due to
most implementations of Latin hypercube sampling placing points ran-
domly within the Nd cells [204]. Orthogonal sampling is more complex
than Latin hypercube sampling and the added guarantee is not worth
the extra layer of complexity, since Latin hypercubes virtually always
produces a set of points that are close to uniformly distributed on large
scales.
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Having a Latin hypercube as training data thus ensures that the
resulting neural network will be equally precise in all parts of the pa-
rameter space, which is beneficial if one wants to remain completely
agnostic with respect to cosmological models and data. A drawback
when sampling from a hypercube, however, is that the density of points
around the region of interest (when computing the likelihood function)
becomes very small in higher dimensions. Most of the volume is in the
corners of the hypercube in higher dimensions, and this leads to a very
sparse sampling for all feasible numbers of points, N . This means that
possible features in the best-fit region are not resolved very well. A
neural network trained on a hypercube of points still gains information
from the outermost points, but it usually requires many more epochs
of training (Ref. [157] reports 50,000 epochs for 104 points) in order
to extract all the required information to perform well in the region of
interest. Hence, only very smooth likelihoods can be accurately repre-
sented by this sparse sampling. If the likelihood is highly non-Gaussian,
the information from the sparsely sampled points might be insu�cient
for accurate emulation.

8 . 2 . 2 LAT IN HYPERSPHERE SAMPL ING

This issue of the Latin hypercube can be circumvented by concentrating
the sampling inside a hypersphere centred around the (approximate)
best-fitting set of parameters. However, whereas the construction of
the Latin hypercube is trivial, the procedure of sampling from a Latin
hypersphere can be challenging in high dimensions. To illustrate, for
generating a Latin hypersphere of N points, one might naively think
that a good solution is to generate a Latin hypercube of M points,
where M = N ◊ rd and rd is the ratio of the volume of a d-dimensional
hypercube to that of an inscribed hypersphere [2],

rd =
V

cube
d

V
sphere
d

=
2d G( d2 + 1)

fi
d/2

, (8.1)

and then reject all points with a Euclidean distance larger than 1 (radius
of the hypersphere) to the centre. This is not ideal, however, since rd
grows to very large values for higher dimensions as seen in figure 8.1.
For example, if one needs to sample 104 points in a 15-dimensional
hypersphere, the required Latin hypercube would take up ≥50 GB of
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Figure 8.1: The figure shows how the ratio between the volumes of a hy-
percube and its inscribed hypersphere grows with higher dimensionality. The
number of points, M , needed in a Latin hypercube in order to have N points
within the hypersphere is depicted as a function of dimensionality for various
values of N . The background colours indicate the minimum required RAM in
order to store a Latin hypercube of M points of a certain dimension in mem-
ory (single precision), and two specific values of 8 GB and 512 GB have been
highlighted by the dashed and dash-dotted lines, respectively.

memory. In practice, this makes it very unfeasible to go beyond 10
dimensions, and outright impossible to go beyond 15 dimensions.

However, since Latin hypercubes appear random on small scales, we
might not need to enforce the Latin criterion on the sphere. If we
can sample enough uniformly random points in the hypersphere, the
density of points close to the best-fit region is still much greater than
for any feasible Latin hypercube, and this set of points contains much
more relevant information that can be extracted by a neural network in
significantly fewer epochs during training. The question is then how to
sample from a uniform hyperspherical distribution.

8 . 2 . 3 RANDOM UNIFORM SAMPL ING FROM A
HYPERSPHERE

A way to uniformly sample from a hypersphere is to sample from an-
other isotropic distribution and transform the points to a sphere after-
wards [205]. A standard multivariate normal distribution (i.e. a multi-
variate normal distribution with the identity covariance matrix C = 1

and zero mean µ = 0) is one such isotropic distribution. Hence, if we
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N = number of points to sample
d = dimensionality
S = Normal(num=N, dim=d)
R =

p
sumd(S2)

P = RandomUniform([0, 1], N)
R
Õ = P1/d

S = S ◊R
Õ/R

normally distributed points
distances to the centre
sample P(r) uniformly
compute new radii
rescale points to sphere

Algorithm 8.1: Pseudo-code for random uniform sampling directly from a
hypersphere. A similar algorithm is presented in Ref. [205].

sample N points from a d-dimensional standard normal distribution
and divide the coordinates of all points with their Euclidean distance
from the centre, we obtain a sample of points uniformly distributed on
the surface of a d-dimensional hypersphere with radius 1. We then need
to distribute the points evenly throughout the hypersphere by multiply-
ing the points by new radii. These new radii should be sampled from
a non-uniform distribution in the interval [0, 1] in order to account for
more points required in the outer parts compared to around the cen-
tre. Each hyperspherical shell needs to be weighted by the volume
in that shell (scaling as r

d≠1), which means that we need to sample
from the distribution fi(r) = d r

d≠1, where the dimension constitutes
a normalisation factor. The Probability Integral Transformation [206]
implies that the cumulative distribution function of fi(r) is uniformly
distributed between 0 and 1, and we thus get

P(r) =
Z

r

0
fi(x) dx =

Z
r

0
d x

d≠1 dx = r
d ≥ U(0, 1) . (8.2)

This means that we can just sample P(r) = r
d uniformly and then take

the dth root of the samples in order to get the distribution of radii. This
is summarised in the pseudo-code depicted in algorithm 8.1.
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8 . 2 . 4 SAMPL ING NEAR BOUNDARIES

In some cases we cannot sample from the entire hypersphere: If a param-
eter has a (physically motivated) hard boundary slicing the hypersphere,
e.g. a non-negative particle mass, we cannot allow points outside of this
boundary. In this case, the parameter space boundaries can be enforced
through rejection sampling. One would then first sample from the hy-
persphere as if all of the parameter space is allowed, and then reject
all points outside the boundaries. In practice, we implement this rejec-
tion sampling as a Python generator that maintains a cache of points
generated using algorithm 8.1.

Contrary to the rejection sampling described in section 8.2.2, this is
not expensive memory-wise since we can reject points on-the-fly. How-
ever, it might become computationally expensive if the boundaries of
any parameter are such that only a thin slice of the hypersphere is al-
lowed. In this case, the rejection rate would be close to 100%. However,
this situation could be easily remedied by sampling uniformly from this
thin slice along the parameter in question (good approximation for thin
slices) while still sampling from a hypersphere in the other parameters.

8 . 2 . 5 HYPERELL IPSO ID WITH CORRELATIONS

Finally, when sampling from a hypersphere, one will obviously need to
scale the dimensions to fit the parameters (like one would scale a Latin
hypercube), thus turning the hypersphere into a hyperellipsoid. This
ellipsoid is uncorrelated in all parameters by construction, and in most
cases this will be a very good sample, as we will see in section 8.3. We
can, however, use additional information (if available) about correla-
tions between parameters to significantly improve the performance by
sampling along the known directions of correlation. In order to include
correlations, we transform the sampled points from algorithm 8.1 using
the Cholesky transformation [207, 208]. With the prior knowledge of
the parameter correlations stored in the covariance matrix C, the lower
triangular matrix L that satisfies C = LL

T is determined from the
Cholesky decomposition. From this, a transformed (correlated) point,
p̃, is computed as the matrix multiplication p̃ = Lp, where p is the
uncorrelated point. This procedure, along with the rejection of points
outside the parameter bounds described in section 8.2.4, is summarised
in algorithm 8.2. It is usually better to start with a known LCDM
covariance matrix and then treat other parameters as uncorrelated if
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N = number of points to sample
d = dimensionality
B = bounding box
C = covariance matrix
M = bu�er size larger than N

L = CholeskyDecomposition(C)
points = { }
while Size(points) < N do

P = Hypersphere(M,d)
P = MatrixMult(L,P)
Pac = {p œ B, ’p œ P}
Èappend Pac to pointsÍ

points = select N from points

parameter boundaries

bu�er for rejection
lower triangular matrix
initialise set of points

M points from alg. 8.1
transform points
reject outside boundaries

keep only N points

Algorithm 8.2: Pseudo-code for random sampling in a correlated hyperellip-
soid. This procedure uses a covariance matrix to transform points computed
by algorithm 8.1 to reflect correlations of the parameters.

no information is available about their correlations than to not use any
correlations at all. This will be explored in section 8.3.

8 . 3 COMPARISONS US ING CONNECT

In order to show the benefits of hypersphere sampling, we have tested
this against the more conventional approach of using Latin hypercubes.
We use the connect framework1 [2] to sample training data and train
our neural networks. The sampling of training data is done using the it-
erative approach of connect, where an initial neural network is trained
on sparse uniformly distributed points (Latin hypercubes up until now)
and then used to sample new points using MCMC. This continues until
a set of training data points, representative of the likelihood, is built.
The new implementation allows for a di�erent sampling of the points for

1 Publicly available at https://github.com/AarhusCosmology/connect_public.

https://github.com/AarhusCosmology/connect_public
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Lower boundary Upper boundary

Êb 0.014 0.039

Êcdm 10≠11 0.25

H0 30 120

log(1010
As) 1 5

ns 0.7 1.3

·reio 0.01 0.4

fEDE 10≠11 0.3

log10(zc) 3 4.3

◊
scf
i

0.1 3.1

mncdm 0.02 10

Nur 0 6

Table 8.1: Lower and upper boundaries of the cosmological parameters. These
are used for the initial Latin hypercubes and hyperspheres, and they are also
enforced during the MCMC samplings. The first 6 parameters constitute the
LCDM model, while all 11 parameters constitute the EDE+M‹+Nur model.

the initial model than the regular Latin hypercube sampling. Instead,
one can now use a uniformly sampled hypersphere, as presented in sec-
tion 8.2, as a starting point for the iterative process. In this section
we will explore how well the initial neural networks (using hyperspheres
or Latin hypercubes) as well as the networks from the final iteration
of the iterative sampling emulate the output from class. We present
results from two di�erent cosmological models, i.e. the standard 6-
parameter LCDM model and a 5-parameter extension with Early Dark
Energy (EDE) [209–211], additional ultra-relativistic degrees of freedom
Nur and massive neutrinos M‹ to really challenge both the connect
framework as well as the two methods of initial sampling. For each
cosmological model, we compare the following initial configurations:

• HS (correlated): Hypersphere with 1,000 points with correla-
tions from a converged MCMC run.
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• HS (uncorrelated): Hypersphere with 1,000 points with no cor-
relations.

• HS (LCDM correlated): Hypersphere with 1,000 points with
LCDM correlations and no correlations for the extended parame-
ters (only applies to the EDE+M‹+Nur runs).

• LHC (Small): Latin hypercube with 1,000 points.

• LHC (Medium): Latin hypercube with 10,000 points.

• LHC (Large): Latin hypercube with 100,000 points.

The boundaries in the parameter space can be seen in table 8.1. All
networks have been trained for 500 epochs with a batchsize of 256, and
otherwise the same hyperparameters as in Ref [2]. The training data
from the first iterations (using the initial neural networks) has been
discarded for all Latin hypercubes (standard setting in connect), since
it is usually far from the best-fit region and therefore contaminates our
total set of training data, while data from all iterations has been kept
for the hyperspheres. For the subsequent MCMC runs using the neural
networks, we have employed a data set consisting of:

• Planck 2018 high-¸ TTTEEE, low-¸ TT+EE, and lensing [21,
127].

• Baryon Acoustic Oscillations (BAO) measurements from BOSS
DR12 [70], the main galaxy sample of SDSS DR7 [72] and
6dFGS [71].

• Pantheon supernova data [212].

The training data is gathered using the marginalised Planck 2018 high-¸
TTTEEE Lite likelihood due to its rapid evaluation time along with
low-¸ TT+EE. This data set is less constraining and always produces
adequate training data [2] when the final data set includes the full
Planck likelihood. For each MCMC, we have run 6 chains using Mon-
tePython [63, 101], considering the runs to be converged when the
Gelman-Rubin statistic fulfils R≠ 1 < 0.01. Some of the MCMC runs
for the EDE+M‹+Nur model using the initial neural networks trained
on either hyperspheres or Latin hypercubes have di�culties converging,
and was stopped when the number of accepted points were similar to
the converged runs.
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Figure 8.2: The triangle plot shows the point distributions of the various
initial configurations in the LCDM model within 50 standard deviations of
the best-fit point in all parameters along with the 2D posteriors when using
class. The top-right panel shows the number of points within n standard
deviations of the best-fit point in all parameters as a function of n for the
di�erent configurations.

8 . 3 . 1 LCDM

The LCDM model has the parameter vector Q = {Êb, Êcdm, H0,
log(1010

As), ns, ·reio} along with extra relativistic relics that fix Ne� =
3.046. This is often quite easy to sample because of its likelihood surface
being almost perfectly Gaussian. Figure 8.2 highlights the di�erences in
sampling density around the best-fit region between the various initial
configurations. The triangle plot only includes points that are within
50 standard deviations (determined by an MCMC with class) of the
best-fit point in all parameters. It is evident that the correlated hyper-
sphere has a much higher point density around the contours of the class
posterior, with the largest Latin hypercube with 100,000 points being



210 hypersphere sampling of training data

101

10≠1

10≠3

10≠5

TT

HS correlated
HS uncorrelated
Darkness prevails

LHC (Small)
LHC (Medium)
LHC (Large)

TE EE
Initial

��

101102 1000 2000

101

10≠1

10≠3

10≠5

|D
co

nn
ec

t
¸

�
D

cl
as

s
¸

|
rm

s� D
cl

as
s

¸

�

101102 1000 2000
�

101102 1000 2000 101102 1000 2000

Final
iteration

Figure 8.3: Errors of the neural networks emulating the LCDM model when
emulating the CMB spectra of representative test data. The top panels show
the errors of the initial models before the iterative process and the bottom pan-
els show the errors of the networks from the final iterations of their respective
runs. The test data is taken from a converged LCDM MCMC and is therefore
the error around the best-fit and not an indicator of the training error. The
lines correspond to a 95.45% confidence level where 95.45% of the computed
points have errors beneath the lines.

second. It is also worth noticing that the uncorrelated hypersphere and
the medium Latin hypercube with 10,000 points have roughly similar
point densities. This is also supported by the top-right panel, which
shows the number of points within n standard deviations of the best-fit
point in all parameters as a function of n for the di�erent configurations,
where the uncorrelated hypersphere and medium Latin hypercube follow
each other up until around n = 50. The limit of 50 standard deviations
in the triangle plot was chosen such that the Latin hypercubes would
have around half of their points included. If we had chosen too include
all points, the view of the best-fit region would have been obscured by
the large amount of points from the Latin hypercubes that are close to
the best-fit in the 2 parameters of each 2D plane, but very far away
in other parameters. The top-right panel also clearly shows how much
closer to the best-fit point the points of the correlated hypersphere are.
One would need a Latin hypercube of many orders of magnitude more
points to achieve the same density.
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Figure 8.4: Posteriors from the MCMC runs using the initial neural networks
emulating the LCDM model. A similar MCMC run using class is also shown
in black dashed lines as a reference. The table in the legend gives the number of
training data points the respective networks used for the MCMCs were trained
on.

Figure 8.3 shows, for each of the TT , TE, EE and „„ spectra, the
di�erence in the D¸ © ¸(¸ + 1)C¸/2fi coe�cients between connect
and class relative to their root-mean-square values in class. The top
panel shows the 95.45% percentile of the error based on only the initial
configurations while the bottom panel shows the same for the final it-
erations. It is apparent that a neural network trained on a correlated
hypersphere outperforms all of the other initial networks in terms of pre-
ciseness around the best-fit region, since it has the most representable
training data. In fact, in order to be as precise a hypersphere with
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Figure 8.5: Posteriors from the MCMC runs using the neural networks emu-
lating the LCDM model from the final iterations. A similar MCMC run using
class is also shown in black dashed lines as a reference. The table in the
legend gives the number of training data points the respective networks used
for the MCMCs were trained on.

only 1,000 points, a Latin hypercube would need more than 2 orders
of magnitude more points (when restricting the training process to 500
epochs). Even if we lose the information of any correlations, the uncor-
related hypersphere seems to be just as good as a Latin hypercube with
10 times the amount of points, as also suggested by figure 8.2.

All of the runs, however, converge on good training data as can be
seen in the lower panels of figure 8.3, where the precisions of the net-
works from all of the final iterations are shown. The only one that
stands out as slightly less precise after the final iteration is the one with
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an initial Latin hypercube of 1,000 points. This is most likely due to
it having more training data away from the best-fit region. The initial
network of this run is also worse than the rest, and it probably takes
more iterations to locate the best-fit region than just the first one that
is discarded afterwards. This leaves us with a lot of training data far
from the region of interest, thus making the network less precise in order
to accommodate the additional training data.

Figures 8.4 and 8.5 show the posteriors obtained from emulators
trained on the initial and final configurations, respectively, along with
posteriors obtained using class. We can again see that the initial net-
works trained on a correlated hypersphere of 1,000 points and a Latin
hypercube of 100,000 points perform similarly, while the initial network
trained on an uncorrelated hypersphere of 1,000 points performs simi-
larly to one trained on a Latin hypercube of 10,000 points. The small
Latin hypercube of only 1,000 points is too sparse to give a good start-
ing point, since its contours are far away from the rest. This is, however,
not a problem when using the iterative approach, as is apparent from
figure 8.5 where the posteriors from the final configuration emulators
are seen to be nearly identical; instead, the downside of a poor initial
configuration is that it requires more iterations and training data, re-
ducing the total gain in computational e�ciency from the emulation.
One might think that the correlated hypersphere is very sensitive to
the choice of centre point since it is much more narrow than the uncor-
related hypersphere or the Latin hypercube, but we have tested that
the results are consistent with default settings even when o�setting the
centre point as much as 10 standard deviations simultaneously in each
parameter.

Table 8.2 shows the final number of iterations in each connect train-
ing procedure along with how many class evaluations have been used.
The initial hypersphere and Latin hypercube data is always discarded
and the first iteration consisting of 5,000 points is discarded for all Latin
hypercubes. We can see that the run with the small Latin hypercube
indeed takes more iterations, but the amount of class evaluations is
similar to the runs with the uncorrelated hypersphere and the medium
Latin hypercube. Although the number class evaluations is a good
way to measure roughly how much CPU time is spent (since it is the
slowest part of the sampling), there is an overhead from the MCMCs
and training of each iteration that become more significant with several
iterations. With a close-to-Gaussian likelihood like LCDM (or simple
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Iterations class evaluations

Correlated hypersphere 3 25,119

Uncorrelated hypersphere 3 42,411

Latin hypercube (Small) 5 37,905

Latin hypercube (Medium) 4 40,320

Latin hypercube (Large) 3 127,172

Table 8.2: Number of iterations and amount of class evaluations (from both
the initial sampling and the iterative process) in each LCDM connect run.
The initial data from hyperspheres and Latin hypercubes is always discarded
and furthermore the first iteration of 5,000 points is discarded for all Latin
hypercubes.

extensions), the configuration does not matter much for the final re-
sult when using relatively low precision settings (e.g. a low number of
epochs), but one can significantly speed up the process and reduce the
computational cost by using a hypersphere instead of a Latin hyper-
cube.

8 . 3 . 2 EDE+M‹+Nur

This large extension model with a parameter vector of Q = {Êb, Êcdm,
H0, log(1010

As), ns, ·reio, fEDE, log10(zc), ◊
scf
i

, mncdm, Nur} con-
sists of the usual LCDM parameters, two massless neutrinos, a single
neutrino with mass mncdm, additional ultra-relativistic degrees of free-
dom contributing a value Nur to the amount of relativistic degrees of
freedom in the early universe, and finally, an early dark energy (EDE)
model [211]. The particular EDE model used here is the original axion-
like model based on [209, 210], which involves an axion-like scalar field
that is frozen at its initial field value ◊

scf
i

due to Hubble friction, un-
til a redshift zc, at which it rolls to the bottom of its potential, acting
e�ectively as a fastly decaying fluid. Since it acts as a vacuum energy ini-
tially, its maximum fractional contribution to the energy budget, fEDE,
is realised at the decay time zc. In the following, we use the implementa-
tion of the EDE model presented in [213]2. This large, combined model

2 Publicly available at https://github.com/mwt5345/class_ede.

https://github.com/mwt5345/class_ede
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Figure 8.6: Errors of the neural networks emulating the EDE+M‹+Nur
model when emulating the CMB spectra of representative test data. The top
panels show the errors of the initial models before the iterative process and
the bottom panels show the errors of the networks from the final iterations of
their respective runs. The test data is taken from a converged EDE+M‹+Nur
MCMC and is therefore the error around the best-fit and not an indicator of
the training error. The lines correspond to a 95.45% confidence level where
95.45% of the computed points have errors beneath the lines.

was primarily chosen to showcase the potential of using hyperspheres
instead of Latin hypercubes, and it also serves as a good test of the
connect framework.

The precision settings are the same as before with 500 epochs during
training of the networks even though the MCMCs with this model take
much more time to converge due to it being far from Gaussian in the
extended parameters. Figure 8.6 shows the 95.45% percentiles of the
errors in the CMB coe�cients emulated by the initial configuration net-
works (top panel) and the networks from the final iterations (bottom
panel) from connect, compared to the values obtained directly from
class. It is clear from the figure that the initial neural network trained
on a correlated hypersphere using the actual correlations of the model
is much more precise than the rest of the initial networks within the
best-fit region. Again we see a similar performance of the uncorrelated
hypersphere and the medium Latin hypercube with 10,000 points, but
in addition we also see a similar performance between the hypersphere
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Figure 8.7: Posteriors from the MCMC runs using the initial neural networks
emulating the EDE+M‹+Nur model. A similar MCMC run using class is also
shown in black dashed lines as a reference. The table in the legend gives the
number of training data points the respective networks used for the MCMCs
were trained on.

with only LCDM correlations (and no correlations in the extended pa-
rameters) and the large Latin hypercube with 100,000 points.

Figure 8.7 shows the posteriors from the initial neural networks of
all runs. A mix between LCDM parameters and extended parameters
have been chosen that best depicts how far some of the posteriors are
from the best-fit region, since many of the extended parameters have
significant posteriors all throughout their prior bounds. We clearly see
that the correlated hypersphere has the most overlap with class, al-
though 1,000 points and 500 epochs is too small to correctly emulate
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the model. The hypersphere with only LCDM correlations seems to
be the one with the second most overlap, even though some correla-
tions di�er significantly from the LCDM model. This suggests that
it is reasonable to use LCDM correlations if true correlations are not
known beforehand, even though the model is significantly di�erent. The
reason for this is that the correlated hyperellipsoid is quite wide com-
pared to the true posterior, so there is still a much higher density of
points near the best-fit point compared to the uncorrelated hypersphere
– even when using slightly wrong correlations. Extensions to the LCDM
model might alter the correlations between the LCDM parameters, but
usually not so much that this is not the case. The small Latin hyper-
cube once again performs worse than the others, and it is much too
sparse to discover any correlations in the model which is apparent from
the (H0,log(1010

As))–contour where all posteriors fall on the same line
except that of the small Latin hypercube.

The figures 8.8 and 8.9 show the posteriors when sampling with the
neural networks from the final iterations for hyperspheres and the Latin
hypercubes, respectively. Only the extended parameters along with H0
are shown, since all other posteriors are close to Gaussian and agree
very well with class for all runs. It is immediately clear that the poste-
riors calculated using the final iterations of the hyperspheres are much
closer to the class results than those calculated using the Latin hyper-
cubes. It seems that using a Latin hypercube as initial training data
(even with 100,000 points) for a complicated cosmological model does
not produce the correct result with the default settings of connect.
Training for more epochs and collecting more data from each iteration
will of course solve this, but this would also increase the computational
costs significantly. The correlated hyperspheres (true correlations and
LCDM correlations) are slightly more accurate than the one with no
correlations, and this again suggests that slightly wrong correlations
might be better than no correlations at all.

Indeed, the two correlated hyperspheres in figure 8.8 actually seem
to agree quite well with class and the subtle di�erences could be ex-
plained by the class MCMC being slightly less converged. The curious
“hole” in the (log10 zc, ◊scf

i
)–contour is also reproduced by the final it-

erations of the correlated hyperspheres and to a lesser extend also the
uncorrelated hypersphere. This is not lack of convergence, since we
expect this feature to be present (see e.g. [211, 213–215]).
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Figure 8.8: Posteriors from the MCMC runs using the neural networks em-
ulating the EDE+M‹+Nur model from the final iterations of the hypersphere
runs. A similar MCMC run using class is also shown in black dashed lines as
a reference. The table in the legend gives the number of training data points
the respective networks used for the MCMCs were trained on.

Table 8.3 shows the number of iterations and total amount of class
evaluations from all these connect runs, and it apparent that the
runs with the small and large Latin hypercubes took significantly more
iterations. This typically indicates that the iterations “jump” around
the parameter space and has di�culties homing in on the best-fit region.

Figure 8.10 illustrates the iterative training data sampling of con-
nect that has the small Latin hypercube (103 points) as initial con-
figuration, in the (H0,fEDE)–plane. It is seen that the training data
gathered by the small Latin hypercube run has di�culties converging,
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Figure 8.9: Posteriors from the MCMC runs using the neural networks emu-
lating the EDE+M‹+Nur model from the final iterations of the Latin hyper-
cube runs. A similar MCMC run using class is also shown in black dashed
lines as a reference. The table in the legend gives the number of training data
points the respective networks used for the MCMCs were trained on.

resulting in training data from very di�erent regions of the parameter
space with little to no overlap in the first few iterations. This means
that we end up with a contaminated set of training data where the
neural network attempts to fit the large contamination during training
at the cost of precision around the best-fit region (represented by con-
tours from an MCMC using class in the figure). Only in the final
iterations does it seem to represent the best-fit region well. Usually,
the iterations would overlap more, which filters away more points, so
fewer class evaluations are needed, but in this case, nearly all points
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Iterations
class
evaluations

Correlated hypersphere 5 40,529

Uncorrelated hypersphere 4 59,733

LCDM correlated hypersphere 4 44,222

Latin hypercube (Small) 8 100,699

Latin hypercube (Medium) 5 54,328

Latin hypercube (Large) 7 155,092

Table 8.3: Number of iterations and amount of class evaluations (from both
the initial sampling and the iterative process) in each EDE+M‹+Nur con-
nect run. The initial data from hyperspheres and Latin hypercubes is always
discarded and furthermore the first iteration of 5,000 points is discarded for
all Latin hypercubes.

are kept and points are only filtered out near the final iterations (aside
from the first iteration which is completely discarded by default). There
are fortunately simple solutions to accommodate this problem:

• using higher precision settings, e.g., training for many more
epochs,

• throwing away training data from more iterations than the first,
even though it can be di�cult to know in advance,

• restarting the connect run with the last model from the previous
run as the initial neural network.

These solutions will all be able to solve the problem, but at much greater
computational cost. Training for many more epochs can significantly
slow down the iterative process, throwing away too many class evalu-
ations is wasteful and should be avoided, and restarting the run means
that all previous training data is discarded, which is also wasteful. The
least wasteful approach with the lowest computational cost will there-
fore be to use a hypersphere as initial guess instead (with correlations
if available) and perhaps use more than 1,000 points for complicated
cosmological models with a high dimensionality like this one.
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Figure 8.10: A depiction of how the training data was sampled iteratively
in the connect run with a small initial Latin hypercube of 1,000 points in
the (H0, fEDE)–plane. The black points and the hatched contours represent
discarded data. The class contours have been included for reference.

8 . 4 CONCLUS ION AND OUTLOOK

We have tested the performance of networks trained on hyperspheres
and Latin hypercubes as well as how these impact the performance of
the iterative approach of the connect emulation framework. It is ap-
parent that the neural networks trained on hyperspheres greatly outper-
form the networks trained on Latin hypercubes of similar size and with
the same hyperparameters. Although weak knowledge about the shape
and location of the posterior is required to initialise the hypersphere,
this is not much di�erent from the knowledge needed to initialise a
Latin hypercube. We find that even using an uncorrelated hypersphere
instead of a Latin hypercube cuts the amount of training data required
for the same performances down by an order of magnitude, increasing
to several orders of magnitude if correlations are included. Even in
the case of a high-dimensional and highly non-Gaussian cosmological
model like the EDE+M‹+Nur model, the correlated hypersphere with
only 1,000 points trained for just 500 epochs was able to capture a lot
of the behaviour of the observables under variations of the model pa-
rameters. These are quite low precision settings for the initial model,
since its job in connect’s iterative sampling is only to approximately
locate the best-fit region, so if one wished to train a network just on
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a hypersphere without the iterative approach, an order of magnitude
more points and epochs, should be su�cient in nearly all cases. No
matter the initial configuration presented in this paper, using a final
connect network for MCMC runs is computationally much cheaper
than using class directly in the MCMC, including sampling of train-
ing data, training the network, and the MCMC itself. This is especially
true for elaborate cosmological models with di�culties converging.

As shown by other emulators [113, 157], Latin hypercubes are
most certainly capable of good precision, but they require orders of
magnitude more epochs, and for beyond-LCDM models also orders
of magnitude more training data. If the aim of an emulator is to
emulate a range in all parameters equally well, the Latin hypercube is
still a good option, but if the aim is to use an emulator to compute
likelihoods, the most e�ective option is to have the distribution of
training data resemble the likelihood function. This is accomplished
by the iterative approach of connect, but one can get very close to
the same e�ectiveness with a targeted uniform sampling representing
the best-fit region, i.e. a correlated hypersphere. Especially in cases
where the underlying cosmological code is prohibitively expensive, e.g.
N -body codes, we conjecture that the performance would be greatly
improved by switching to hypersphere sampling instead of Latin hyper-
cube sampling. Indeed, emulators of N -body codes often only use very
few training data points due to them being very slow to evaluate, but
with a hypersphere, those few points would be much better distributed
in order to capture the behaviour where the likelihood is significant.

Reproducibility. We have used the publicly available connect frame-
work available at https://github.com/AarhusCosmology/connect_
public to create training data and train neural networks. The frame-
work has been extended with the new way of sampling initial train-
ing data using hyperspheres. Explanatory parameter files have been
included in the repository in order to easily use the framework and
reproduce results from this paper.

https://github.com/AarhusCosmology/connect_public
https://github.com/AarhusCosmology/connect_public
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F INAL THOUGHTS AND
PERSPECTIVES

Congratulations! You have reached the end of the thesis. During this
thesis, you have been dragged through the formalities of the statistical
frameworks employed, endured the vast number of equations involved in
not only the treatment of cosmic microwave background radiation but
also the evolution of matter, energy, and structure in the universe, per-
severed through the intricate derivation of the mathematics behind the
training of neural networks, and you have survived the detailed presen-
tation and description of the connect framework and its applications.

The work presented here aimed to address a significant challenge in
cosmology – the computational intensity associated with the analysis
of complex cosmological models. By developing the connect frame-
work, I have demonstrated how neural networks can serve as a powerful
tool for emulating cosmological observables, e�ectively alleviating the
computational bottleneck that often limits the scope of parameter in-
ference. This thesis explores not only the practicalities of implementing
connect but also the underlying theory, from statistical methods to
machine learning techniques. Through the use of connect, the cosmo-
logical community now has access to a more e�cient way of conducting
model parameter inference, which opens up new possibilities for explor-
ing the universe. While this work has laid a strong foundation, it is
only the beginning of what is possible with the integration of machine
learning in cosmological research.

There are a few unfinished projects that I am eager to complete, in-
cluding the implementation of direct likelihood emulation in connect.
Preliminary results have been promising, and the optimised approach
to sampling training data makes this task feasible. This development
could significantly enhance the e�ciency of parameter inference, es-
pecially through the use of gradient-based methods. Some likelihood
codes, which were originally designed to work with much slower Ein-
stein–Boltzmann solvers, have now become bottlenecks due to their
slower evaluation time compared to emulators. The addition of likeli-
hood emulation would thus further improve the framework’s overall ef-
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ficiency. Other projects involve ongoing collaborations where connect
is being used. I take great pride in the growing interest surrounding
the framework, and I am deeply grateful to the researchers who have
embraced the challenge of trying out a new code.

While this thesis represents significant improvements in the applica-
tion of emulation for cosmological parameter inference, much remains to
be done. One of the next areas of focus is expanding the capabilities of
connect to emulate output from more than just Einstein–Boltzmann
solver codes. N -body simulations, which face even greater challenges
due to the slow computation of observables, present an exciting oppor-
tunity for connect. Emulating power spectra obtained from N -body
simulations is already underway, but current emulators often rely on
Latin hypercube sampling [103, 201]. This method frequently includes
points with very low likelihood, especially in the corners of the cuboid.
By employing the active learning strategy of connect or hypersphere
sampling, this process could become much more e�cient, making it
possible to focus on more relevant points in the parameter space.

I mentioned in the very first sentence of this thesis that it marks the
end of an era, and while that is indeed true, it also marks the beginning
of a new one. As our understanding of the universe continues to expand
and new theoretical models emerge, alongside the increasing availability
of observational data through cosmological surveys, tools like connect
will be crucial in pushing the boundaries of what we can infer from this
vast amount of data. I look forward to the continued development of
this framework and the exciting discoveries that will undoubtedly follow
as machine learning transforms the way we explore and understand the
cosmos.
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Never before has cosmology seen a transformation such as the one

going on right now. Artificial intelligence is very rapidly advancing

to aid in scientific endeavors and the continued advancements will

give us the opportunity to efficiently analyse vast amounts of data.

You can rest assured that cosmologists will work relentlessly to keep

up with the advancements and utilise them the best we can. We might

never unlock all of the secrets of the Universe, but knowing what is

going to happen, would take the fun out of the pursuit anyway.

To exploit the many aspects of the field of machine learning that will

let us efficiently analyse cosmological models, this thesis presents

you with the emulation framework CONNECT. The thesis breaks

down the development of the framework and its many applications

never before possible without emulation. During the thesis, we are

going to cover the basics of cosmology and machine learning, how

to analyse cosmological models using emulation as well as how to

run the CONNECT code. The work presented here is the product of

around four years as a PhD student at the Department of Physics

and Astronomy at Aarhus University. In the enormous cosmological

desert, this amazing emulation tool might just be the beacon of light

you have all been waiting for.
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